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Abstract Regionalization frameworks cluster geographic

data to create contiguous regions of similar climate, geol-

ogy and hydrology by delineating land into discrete

regions, such as ecoregions or watersheds, often at several

spatial scales. Although most regionalization schemes were

not originally designed for aquatic ecosystem classification

or management, they are often used for such purposes, with

surprisingly few explicit tests of the relative ability of

different regionalization frameworks to group lakes for

water quality monitoring and assessment. We examined

which of 11 different lake grouping schemes at two spatial

scales best captures the maximum amount of variation in

water quality among regions for total nutrients, water

clarity, chlorophyll, overall trophic state, and alkalinity in

479 lakes in Michigan (USA). We conducted analyses on

two data sets: one that included all lakes and one that

included only minimally disturbed lakes. Using hierarchi-

cal linear models that partitioned total variance into within-

region and among-region components, we found that eco-

logical drainage units and 8-digit hydrologic units most

consistently captured among-region heterogeneity at their

respective spatial scales using all lakes (variation among

lake groups = 3% to 50% and 12% to 52%, respectively).

However, regionalization schemes capture less among-

region variance for minimally disturbed lakes. Diagnostics

of spatial autocorrelation provided insight into the relative

performance of regionalization frameworks but also dem-

onstrated that region size is only partly responsible for

capturing variation among lakes. These results suggest that

regionalization schemes can provide useful frameworks for

lake water quality assessment and monitoring but that we

must identify the appropriate spatial scale for the questions

being asked, the type of management applied, and the

metrics being assessed.

Keywords Ecoregions � Hierarchical linear models �
Lake classification � Landscape �
Minimally disturbed lakes � Watersheds

Introduction

Many scientists and managers now view lakes as an inte-

grated part of the landscape. This perspective exists in part

because of our understanding that landscape features are

hierarchically organized, such that broad-scale landscape

and climatic features constrain the occurrence of local

landscape features and in-lake processes (Frissell and

others 1986, Tonn 1990, Poff 1997). By accounting for this

hierarchy, we can better understand the factors that drive

lake responses to disturbance, tease apart natural and

human-induced variation among lakes, and define refer-

ence conditions, thereby setting more realistic expectations

within and among lake types and spatial groupings.

Many state, federal, and international agencies have

moved toward a regional approach for lake assessment and

monitoring. One such approach is regionalization frame-

works, which cluster geographic data to create contiguous

regions. Although regionalization schemes do not account

for local or site-specific variation among lakes, they may
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capture broad-scale patterns in features such as climate,

geology, hydrology, land use and land cover, soils, or

vegetation that are important for understanding variation

among lakes across large spatial scales. When coupled with

a statistically valid sampling program, regionalization

frameworks provide a logistically feasible framework for

lake monitoring and assessment, especially across large

geographic regions, and allow for extrapolation from

sampled to unsampled lakes (Seelbach and others 2002). In

fact, regionalization schemes are currently used as general

frameworks to design sampling programs, assess water

quality, determine the effects of acid rain and cultural

eutrophication on biota, and implement monitoring strate-

gies by many state, federal, and nongovernmental

environmental agencies in the United States (e.g., United

States Environmental Protection Agency (USEPA), United

States Geological Survey, The Nature Conservancy) and in

European countries (Sandin and Johnson 2000, Santoul and

others 2004, European Union Water Framework Directive

2000).

Although the majority of regionalization schemes were

not originally designed for lake monitoring and assessment,

these practices are very common. Using regionalization

frameworks for such purposes assumes that characteristics

of lakes within regions are more similar than characteristics

of lakes across regions (Gallant and others 1989, Gerritsen

and others 2000). Despite widespread use of regionaliza-

tion schemes for lake assessment, there has been little

effort to investigate this assumption by quantifying whe-

ther these frameworks partition significant amounts of

regional lake variation (Jenerette and others 2002). Two

possible approaches exist to address this issue. One

approach is to use lake and stream monitoring data to

create a new regionalization framework specifically

designed to define water quality (as was done for streams

by Robertson and others [2006] and for lakes by Omernik

and others [1988, 1991]). The other approach is to use lake

and stream monitoring data and their locations within a

variety of different regionalization schemes to test their

ability to partition regional lake variation. We took the

latter approach because many existing regionalization

frameworks are currently being used without having been

tested or compared with each other to see which performs

best for lake monitoring and assessment.

To date, most investigations that have taken this latter

approach to assess the effectiveness of regionalization

schemes and grouping schemes for aquatic ecosystem

management have focused on streams (Newall and Mag-

nuson 1999, Pan and others 2000). Furthermore, the

emphasis of these investigations has often been on group-

ing aquatic ecosystems according to measures of

community structure, such as species richness or diversity

(e.g., Newall and Magnuson 1999, Van Sickle and Hughes

2000, Moog and others 2004). Only a few such studies

have examined the efficacy of regional frameworks to

group similar lakes. For example, studies have found that

littoral macroinvertebrate assemblages in Swedish lakes

(Johnson 2000) and nutrients in Minnesota lakes (Heiskary

and others 1987) correspond to ecoregions. We are aware

of only one quantitative evaluation of the ecoregion con-

cept for describing large-scale patterns in lake water

chemistry and quality. Jenerette and others (2002) com-

pared the classification ability of one ecoregion delineation

to state political boundaries and land use clusters using 15

lake water chemistry and quality variables in 365 North-

eastern United States lakes. They found that ecoregions

were only 18% effective at classifying lakes. These results

indicate that regionalization frameworks, such as ecore-

gions, may not be appropriate for lake monitoring and

assessment and therefore require further testing.

Additional uncertainty exists about the spatial scale (or

geographic extent) across which lake groups should be

formed. Because landscape features are spatially orga-

nized, many regionalization schemes are delineated at

multiple hierarchical spatial scales (Table 1). In addition,

different regionalization frameworks result in regions of

vastly different size. However, few studies have been

conducted to determine the effect of spatial extent on the

relative efficacy of different regionalization schemes.

Finally, if the lake attributes being measured are not con-

strained spatially (e.g., if lake properties vary

independently over the landscape or if internal processes

dominate independent of the landscape), then these

frameworks will be ineffective at partitioning variance

(Hawkins and Vinson 2000). These facts highlight the need

for research such as ours that (1) determines the appro-

priate spatial scale for regionalization frameworks to be

effective for lake monitoring and assessment and (2)

quantifies how well regionalization schemes and other lake

grouping schemes partition variability before they are

implemented for ecosystem management (Johnson 2000,

Omernik 2003, 2004). We addressed these issues by

comparing many regionalization frameworks and by

explicitly quantifying the variation among and within lake

groups and the spatial autocorrelation of water quality

variables with a large number of lakes across a large spatial

extent.

We quantitatively compared multiple regionalization

schemes and compared them with other lake grouping

schemes as well as political boundaries to determine which

approach maximizes among-lake group heterogeneity for a

variety of water quality metrics. Using water quality data

from 479 lakes in Michigan (USA), we quantified the

amount of variation among and within regions (or lake

groups). Because we wished to better understand patterns

of lake water quality, which demands an understanding of
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reference conditions and the degree of alteration from that

state, we conducted all analyses twice: once with all lakes

and once with a subset of those lakes identified as being

minimally disturbed by human activities (Stoddard and

others 2006). Finally, because the question of regionali-

zation frameworks is inherently spatial, we examined how

the spatial extent of each regionalization scheme influenced

our results and whether spatial autocorrelation influenced

the choice of ‘‘best’’ regionalization framework. The

results of our study provide information critical for more

informed lake water quality assessment and monitoring.

We will begin by describing the regionalization schemes

compared in our study.

Existing Regionalization Frameworks and Other

Approaches to Grouping Lakes

Many different contiguous geographic regions have been

defined in the United States. Perhaps most widely known

are ecoregions, which are defined as units of land that

are homogenous with respect to multiple landscape

characteristics (Omernik & Bailey 1997), but others

exist, such as watersheds (defined as the topographic

area that drains water into a water body) and political

boundaries, (e.g., states or counties). Many different

ecoregion frameworks exist both nationally and interna-

tionally. In North America, each ecoregion delineation

has been developed independently and for different

purposes, and each emphasizes somewhat different sets

of landscape features (Table 1). For example, Omernik’s

Level III ecoregion sections (Omernik L-IIIs) are based

on land use and land cover, soils, land surface form, and

potential natural vegetation and were developed to

examine patterns and trends in environmental resources

(Omernik 1987). Bailey’s ecoregion sections (Bailey

sections), which are based on climate, potential vegeta-

tion, natural land cover, and terrain, and regional

landscape ecosystem sections (RLEs), which are based

on climate and physiography, were both developed for

resource and ecosystem management, planning, and

biologic conservation (Bailey and others 1994, Albert

1995, Bailey 2005). In contrast, freshwater ecoregions

(FW Ecos) are based on potential freshwater species

assemblages and were developed for freshwater biodi-

versity conservation (Abell and others 2000).

Watershed and political boundaries are also contiguous

geographically dependent regions used as regionalization

schemes for aquatic assessment and monitoring. We might

expect that the lakes within a river watershed experience

similar hydrologic and landscape features. For the state of

Michigan, the Great Lake basins (GLBs) are watersheds

delineated at a relatively large spatial scale (GLB averageT
a
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area = 36,857 km2). Nested within these basins are the

most common watershed delineation used in the United

States, eight-digit hydrologic units (HUC-8; also referred

to as ‘‘subbasins’’), which are based on delineations of

major river hydrologic features developed by the United

States Geological Survey (Seaber and others 1987). How-

ever, because HUC-8s may or may not completely overlap

with a river’s true topographic watershed (Omernik 2003)

and are based on rivers, we do not know whether they

represent a valuable and accessible framework for group-

ing lakes. Although one might assume that political

boundaries have little to do with the ecology of aquatic

ecosystems, they have been, and to some degree continue

to be, used for lake management purposes. For example,

land use planning is often conducted at the county level and

water quality is managed at the state level.

One regionalization framework represents a combined

approach of ecoregions and watersheds. Ecological

drainage units (EDUs) were developed by agglomerating

HUC-8s using landscape features, such as climate and

landform, to form contiguous, geographically dependent

regions (Higgins and others 2005). These regions were

developed to classify freshwater ecosystems to capture

representative freshwater biodiversity for regional con-

servation planning.

Compared with contiguous regionalization schemes, the

landscape can also be classified geographically into non-

contiguous lake groups. In other words, lakes can be

assigned to the same ‘‘landscape group’’ but not be phys-

ically located next to each other. For example, hydrologic

landscape regions (HLRs) are based on hydrologic, cli-

matic, and geologic data and result in noncontiguous,

hydrologically similar land areas (Winter 2001, Wolock

and others 2004). Finally, lakes can be grouped by

assigning each lake group membership according to a

particular landscape feature (e.g., major land use and land

cover classes that occur throughout any region).

Approach: Data and Methods

Study Lakes and Water Quality Data

The 479 study lakes are located in Michigan. Water quality

data were collected by the Michigan Department of Envi-

ronmental Quality from public lakes [20 ha from 1974 to

1984 using standard sampling and laboratory procedures.

All data are from the stratified summer season (July,

August, and September); all data were collected from the

epilimnion; each lake is represented in the database once.

For lakes that were sampled more than once in a summer,

we randomly chose one sample date; for lakes that were

sampled more than once during the decade, we chose the

most recent year. We examined five response variables that

were available for a large number of lakes across the state,

that exhibited wide response ranges, and that indicated

water clarity (i.e., Secchi disk depth; ‘‘Secchi’’ hereafter),

risk of acidification (alkalinity), and trophic status (total

phosphorus, total nitrogen, and chlorophyll a) (Table 2).

For statistical analyses, nonnormally distributed

response variables were natural log transformed to

accommodate the assumption of normality and homoge-

neity of variance. We also created a composite response

variable for overall lake trophic state using principal

component analysis (PCA) on the correlation matrix (Sy-

stat 9.0; SPSS, Chicago, IL). We used the ‘‘broken-stick’’

criterion to determine how many axes to retain (Jackson

1993, Legendre & Legendre 1998), and ± 0.63 was used as

the loadings cut-off (Tabachnik & Fidell 1989). We iden-

tified one axis that included Secchi, chlorophyll a, total

phosphorus, and total nitrogen and accounted for approxi-

mately 60% of the original variation (Table 3). Note that

for a few lakes, C1 response variables were not sampled,

resulting in smaller sample sizes for trophic state variable

analyses compared with analyses of each individual

response variable (Table 3).

Table 2 Abbreviation, minimum, mean, and maximum for the five water chemistry and water clarity response variables using the all lake and

minimally disturbed lake data sets at the regional and subregional spatial scalesa

Response variable (units) Abbr Regional Subregional

Min Mean Max Min Mean Max

Secchi disk depth (m) Secchi 0.5 (0.5) 3.1 (3.1) 9.1 (9.1) 0.5 (0.5) 3.4 (3.3) 7.8 (7.0)

Chlorophyll a (lg/L) Chl a 0.1 (0.2) 5.7 (5.9) 66 (66) 0.1 (0.2) 5.3 (6.7) 54 (54)

Total nitrogen (lg/L) TN 66 (66) 586 (581) 2756 (1717) 111 (111) 485 (448) 1430 (1430)

Total phosphorus (lg/L) TP 3 (3) 18 (18) 155 (155) 1 (1) 12 (12) 70 (46)

Alkalinity (mg/L CaCO3) Alk 0 (0) 97 (96) 225 (225) 1 (1) 70 (47) 186 (186)

n = 464 to 478 and 405 to 415 lakes and n = 145 to 169 and 68 to 78 lakes (minimally disturbed) at the regional and subregional spatial scales,

respectively, depending on the response variable.

Abbr = Abbreviation

Max = Maximum

Min = Minimum
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Regionalization Frameworks and Other Approaches to

Group Lakes

We grouped lakes using 11 grouping schemes that stem

from three broadly different approaches related to whether

or not the groups were geographically dependent and

spatially contiguous (Table 1). All grouping schemes used

C1 global information system (GIS) coverage to assign

lakes to categories using the sources listed in Table 1

(except for water quality and random lake groups; see

later).

Contiguous Geographically Dependent Regionalization

Schemes

We used six published ecologically based regionalization

frameworks with existing GIS coverages: three types of

ecoregions, RLEs, watersheds, and EDUs (Table 1 and

citations therein). All six of these regionalization schemes

were previously delineated at the coarser ‘‘regional’’ spatial

scale (Fig. 1, views i through vi), but just two (RLEs and

watersheds; views viii–x) were previously delineated at the

finer ‘‘subregional’’ spatial scale for the state of Michigan

(Fig. 1, views vii through xi). We also grouped lakes by the

arbitrary political boundaries of counties, which we clas-

sified as ‘‘subregional’’ in spatial scale (Fig. 1, view xi).

Noncontiguous Geographically Dependent Groups

We used two such lake grouping schemes. First, lakes were

placed into HLRs using a GIS coverage. Based on the

number of HLRs in Michigan, we classify this grouping

scheme as ‘‘regional’’ in spatial scale. Second, for the

human land use lake groups (Human LU), we used Mich-

igan GIS land use/cover data from the Michigan Resource

Information Service (Michigan Resource Information

System 2000) to create a grouping scheme for each spatial

scale. This database has a resolution of 2.5 ha and was

created from aerial photographs of the state taken from

1978 to 1985 and classified using the Anderson Classifi-

cation scheme (Anderson and others 1976). We based the

number of groups and the number of lakes within Human

LUs on the median number of groups and lakes for the

published regionalization frameworks at each spatial scale.

Group membership was based on proportion of human land

use (sum of all urban and agricultural land use) within a

500 m buffer around each lake. For example, at the

regional scale using all lakes, this method resulted in four

groups with proportions of human land use in the buffer of

0 to 0.31, 0.33 to 0.52, 0.53 to 0.70, and 0.71 to 1.00.

Geographically Independent Groups

We used two grouping schemes to generate upper (UBs)

and lower boundaries (LBs) for the amount of variation

that occurred among lake groups in our data set. For the

UB, the lake water quality groups were determined sim-

ilarly to the Human LUs but according to values for each

of the six response variables (i.e., lakes were sorted by

each response variable and assigned to groups that max-

imized response variation among those groups). For the

LB, we developed lake groups randomly so that we could

compare all other lake grouping schemes with a null

model. We delineated these two groupings at both the

regional and subregional spatial scales (Fig. 1), and we

based the number of groups and the number of lakes

within groups on the median number of groups and lakes

for the published regionalization schemes at each spatial

scale.

Statistical Methods

Analyses were conducted for each lake grouping scheme at

each available spatial scale (regional and subregional). For

all grouping schemes, an individual group was included if

there were at least four lakes in the group (i.e., individual

regions or subregions with \4 lakes were removed from

analyses), resulting in different data sets at each spatial

Table 3 Component loadings from PCA of the four water quality response variables using all lakes and only minimally disturbed lakesa

Component Regional Subregional

All lakes (n = 394) MD lakes (n = 142) All lakes (n = 342) MD lakes (n = 68)

Secchi disk depth -0.82 -0.78 -0.84 -0.85

Chlorophyll a 0.69 0.59 0.71 0.63

Total nitrogen 0.8 0.76 0.8 0.81

Total phosphorus 0.86 0.86 0.87 0.88

Percent total variance explained 63.5 56.5 65.0 63.4

a All variables are considered to dominate the first axis because component loadings are C ±0.63 (Tabachnik & Fidell 1989)
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scale (Tables 1 and 2). All analyses were conducted twice

at each spatial scale: once using all lakes and once using

only minimally disturbed lakes. We defined minimally

disturbed lakes as natural lakes without dams that have

Fig. 1 Study lakes with contiguous geographically dependent region-

alization schemes (i through vi) and noncontiguous geographically

dependent regionalization schemes (vii) at the regional spatial scale

and contiguous geographically dependent regionalization schemes

(viii to xi) at the subregional spatial scale. n = 479 (all lakes) and 167

(minimally disturbed) at the regional scale and 416 (all lakes) and 78

(minimally disturbed) at the subregional spatial scale

Environmental Management (2008) 41:425–440 431
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B25% human land use (agricultural plus urban land use/

cover) within the 500 m buffer surrounding the lake. When

using all lakes, the lakes were widely distributed across the

state of Michigan at both the regional and subregional

spatial scales (Fig. 1, closed and open circles). When

minimally disturbed lakes were used, the regional distri-

bution was similar to that for all lakes; at the subregional

spatial scale, most of the lakes were located in Michigan’s

Upper Peninsula (Fig. 1, closed circles only). To compare

the minimally disturbed lake data set with the all lake data

set, we conducted one-way analyses of variance (ANOVA)

(Systat 9.0; SPSS). These tests demonstrated that alkalinity

and total nutrients were lower in the minimally disturbed

lake data set than in the all lake data set at both spatial

scales (p \ 0.01). Secchi, chlorophyll a, and trophic state

were similar in the two data sets at both spatial scales (p[
0.06).

Comparisons of Lake Grouping Schemes

To determine which regionalization framework maximizes

within-group homogeneity, we used hierarchical linear

models (HLMs). This is a multivariate approach specifi-

cally used to analyze hierarchical or nested data, such as

lakes within regions (Singer 1998, Raudenbush & Bryk

2002). HLMs accommodate unbalanced sampling designs,

missing data points, catagorical data, and small sample

sizes. Because HLMs recognize the hierarchical nature of

the data, they account for the nonindependence of lakes

(our unit of analysis) within regions and separate the total

variance into components at each level (i.e., within and

among regions). This variance partitioning allows for a

quantitative test of which regionalization scheme best

maximizes among-region variance (and thus maximizes

within-region homogeneity; see later). All models were

performed using the SAS MIXED procedure (SAS, Cary,

NC). Although we describe here the approach above for

lakes within ‘‘regions,’’ the approach works for lakes

within any sort of grouping scheme, which allows com-

parisons between contiguous regionalization frameworks,

such as ecoregions, and noncontiguous lake grouping

schemes, such as water quality groups.

To quantify the among-lake group percent variation, an

unconditional HLM (a one-way ANOVA with random

effects and no predictor variables; Raudenbush & Bryk

2002) was performed for each of the response variables,

each of the grouping schemes, and the two different data

sets (all lakes and minimally disturbed lakes) resulting in a

total of 204 models. These models partition the variance

into local (lake) and regional (lake group) variance com-

ponents. An example of an unconditional model with

alkalinity as the response variable is as follows:

Yij¼ c00þrijþu0j; ð1Þ

where Yij is alkalinity for lake i in lake group j; c00 is the

intercept representing the grand mean alkalinity for all lake

groups; rij is the local (lake) error for lake i in lake group j,

where rij�Nð0; r2Þ and r2 represent the within-lake group

variability in alkalinity; u0j is the regional error for lake

group j, where u0j�Nð0; s00Þ and s00 represent the among-

lake group variability in alkalinity.

We tested for the significance of s00; we present sig-

nificant results at alpha levels of 0.05 and 0.10, and we

calculated the intraclass correlation coefficient to measure

the proportion of variance in alkalinity that is among lake

groups (q̂) as:

q̂ ¼ ŝ00=ðŝ00þ r̂2Þ:

We determined the best grouping scheme using two

lines of evidence from these unconditional HLMs. We

defined the best grouping scheme as the one with: (1) the

largest among-lake group percent variation (q̂) and (2) the

lowest corrected Akaike Information Criterion (AICC)

value, a model selection criterion that takes into account

model fit and model complexity and is corrected for small

sample sizes (Burnham & Anderson 2002, Johnson &

Omland 2004). For comparing among models, a smaller

AICC indicates a better-fit model, and a difference of seven

indicates a significantly better model (Legendre &

Legendre 1998).

Finally, because regionalization schemes are spatial

frameworks, spatial autocorrelation of the response vari-

ables is likely (Legendre and others 2002). In fact,

regionalization frameworks assume that lakes that are

closer to one another are more similar than lakes further

apart. Therefore, we examined whether the best regionali-

zation scheme is simply the one that breaks the landscape

up into the most and smallest regions to maximize the

spatial autocorrelation structure of the response variables.

To explore this idea, we took three approaches. First, we

regressed among-group percent variation against the aver-

age area of regions and the number of regions. Second, we

performed regression tree analysis (RTA) to quantify the

nonlinear relationship between the average number or area

of a region and the among-group percent variation for each

response variable using Systat 11.0 (SPSS). RTA is a

recursive data partitioning algorithm that splits the

response variable into two subsets based on the value of the

predictor variable (average region area) that maximizes the

reduction in total residual sum of squares from the parent

group to the two daughter groups (Breiman and others

1984). We examined the ‘‘proportional reduction in error,’’

which is a goodness-of-fit statistic and similar to an r2

value. Third, we fit spherical semivariogram models to

total nutrients, Secchi, chlorophyll a, and alkalinity using
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the all lake data set to quantify the spatial autocorrelation

for each response variable. The parameters for the spherical

semivariogram models were estimated using maximum

likelihood in the programming environment R, using the

likfit function (geoR library).

Results

Comparisons of Lake Grouping Schemes: The Regional

Spatial Scale

For all response variables and when using both the all lake

and the minimally disturbed lake data sets, the random lake

groups resulted in no significant variation among groups (p

[0.30), and the water quality groups resulted in 71.9% to

97.6% variation among groups (p = 0.07 to 0.08) (Fig. 2A).

These two grouping schemes therefore serve as our LBs

and UBs, respectively, to which we compared the ability of

all other lake grouping schemes to group similar lakes.

For the all lake data set at the regional spatial scale

(Fig. 2A, left panel), EDUs most consistently grouped

similar lakes for water quality. The percent variation

among EDUs was significantly different from zero for all

six response variables (p = 0.03 to 0.09) and ranged from

3.2% to 50.0%, depending on the variable (Fig. 2A, left

panel). The variation among EDUs was highest for alka-

linity (percent variation 50.0) and lowest for Secchi and

total phosphorus (percent variations 3.2 and 4.0, respec-

tively). The lowest AICC was also associated with EDU for

five of the six variables (Fig. 2A, left panel). Although

EDUs most consistently maximized within-lake group
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Fig. 2 Percent variation among lake groups using all lakes (left

panels) and only minimally disturbed lakes (right panels) at (A) the

regional and (B) the subregional spatial scales for (i) Secchi, (ii)

chlorophyll a, (iii) total nitrogen, (iv) total phosphorus, (v) trophic

state (composite variable defined by PCA on the four-trophic state

variables in i through iv; see Table 3 for loadings), and (vi) alkalinity.

*Percent variation is significantly different from zero at 0.05 \ p \

0.10; **Percent variation is significantly different from 0 at p\0.05.

Shaded bars indicate the best lake grouping scheme(s) based on AICC

values. LBs and UBs of percent variation are based on random and

quality lake groups, respectively. See Table 1 for lake grouping

scheme names and descriptions. See Tables 1 and 3 for the number of

lakes included in each analysis.
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homogeneity across all response variables, Human LUs

best partitioned variation for total phosphorus (Fig. 2A, left

panel, box iv). For total nitrogen and trophic status, Bailey

and RLE sections resulted in a significant amount of

among-lake group percent variation and AICC values that

were not significantly different from the EDU AICC values

(Fig. 2A, left panel, boxes iii and v). For alkalinity, only

Omernik L-IIIs and FW Ecos were not better than random

lake groups at grouping similar lakes. However, EDUs

resulted in the largest among-group percent variation, and

the AICC was significantly better than for all other schemes

(Fig. 2A, left panel, box vi). Therefore, across all six

response variables using all lakes at the regional scale,

EDUs most consistently maximized within-lake group

homogeneity relative to the other lake grouping schemes.

This result indicates that EDUs best meet the underlying

assumption of these regionalization frameworks: Attributes

of lakes within EDUs are more similar than attributes of

lakes across EDUs.

For the minimally disturbed lakes at the regional spatial

scale (Fig. 2A, right panel), we found that no lake grouping

scheme resulted in a significant amount of among-lake

group variation for five of the six response variables.

However, for alkalinity, there was a significant amount of

among-group variation as well as similar AICC values for

Bailey’s sections, RLE sections and EDUs, with EDUs

resulting in the largest percent variation among its groups

(Fig. 2A, right panel, box vi). Therefore, regionalization

schemes appear to be more effective at capturing among-

lake variation for all lakes than for minimally disturbed

lakes.

Comparisons of Lake Grouping Schemes: The

Subregional Spatial Scale

Similar to the results obtained at the regional spatial scale,

when using both the all lake and the minimally disturbed

lake data sets, our random lake groups resulted in no var-

iation among groups (p[0.30), and our water quality lake

groups resulted in 71.9% to 99.7% variation among groups

(p = 0.002 to 0.08) for all response variables (Fig. 2B).

For the all lake data set at the subregional spatial scale

(Fig. 2B, left panel), HUC-8s best grouped lakes according

to water quality, but we found a significant amount of

among-lake group variation for all six response variables

and all lake grouping schemes (with the exception of

Human LUs for Secchi and chlorophyll a) (Fig. 2B, left

panel). The variation among lake groups was highest for

alkalinity and lowest for Secchi and chlorophyll a. HUC-8s

resulted in the lowest AICC for total nitrogen, and HUC-8s

and counties resulted in similarly low AICCs for total

phosphorus and the composite trophic state variable. For

Secchi and chlorophyll a, HUC-8s, counties, and at least

one of the finer-scaled RLEs resulted in similar AICC

values and percent among-lake group variation. For alka-

linity, HUC-8s and both of the finer-scaled RLEs resulted

in similar AICC values and percent among-lake group

variation. Therefore, considering all six response variables

using all lakes at the subregional scale, HUC-8s most

consistently captured the most variation among lake groups

(Fig. 2B, left panel), indicating that this lake grouping

scheme best meets the underlying assumption of region-

alization frameworks.

For the minimally disturbed lakes at the subregional

spatial scale (Fig. 2B, right panel), we found a significant

amount of among-lake group variation only for alkalinity.

All lake grouping schemes resulted in a significant amount

of percent among-lake group variation for alkalinity, with

HUC-8s and counties resulting in the lowest AICC values

(Fig. 2A, left panel, box vi). Therefore, similar to our

results at the regional scale, regionalization schemes do not

appear to be effective at capturing among-lake variation for

many water quality metrics for minimally disturbed lakes.

Comparisons of Regional and Subregional Spatial

Scales

At the regional scale, the ranks of regionalization frame-

works in capturing among-lake group variation for all lakes

and water quality metrics (from most to least) resulted in

(1) EDUs, (2) Bailey and RLE sections, (3) GLBs and

Human LUs, and (4) HLRs. There was no significant

among-lake group variation for any metric using Omernik

L-IIIs or FW Ecos. At the subregional spatial scale, the

rankings were (1) HUC-8s and counties, (2) RLE sub-

subsections, (3) RLE subsections, and (4) Human LUs.

Between HUC-8s and counties, the AICC values support

HUC-8s as the scheme that better partitions variation

among regions.

We used the best frameworks, EDUs and HUC-8s, at the

regional and subregional spatial scales, respectively, to

compare the amount of variation among lake groups at

these two spatial scales. Using all lakes, HUC-8s resulted

in lower AICC values and greater among-lake group vari-

ation (7.9% on average) for all six response variables than

did EDUs. Overall, this is a rather small difference in the

ability of these two regionalization schemes and spatial

scales to group similar lakes, especially given the large

differences in the number and average size of EDUs

compared with HUC-8s (Table 1).

Finally, we explored the spatial autocorrelation of our

lakes to examine whether the best regionalization frame-

work is simply the one that breaks the landscape up into the

most and smallest regions, therefore capturing any spatial
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autocorrelation present in the data. With the exception of

alkalinity, the percent variation among regions for all

response variables was significantly negatively related to

the average area of those regions (r2 = 0.60 to 0.97, p B

0.013; Fig. 3) and significantly positively related to the

number of regions included in analyses (r2 = 0.54 to 0.97, p

\ 0.02; data not shown; plots very similar to Fig. 3).

However, there were clear exceptions to the overall trend.

For example, two regionalization schemes performed better

than would be predicted based on average area alone for

total nitrogen (Bailey and RLE sections). Using RTA, we

found a threshold in the percent variation among regions at

an average region area of 29,670 km2, which is the average

size of Omernik L-IIIs (Fig. 3), above which there is no to

little percent variation explained among groups. Similarly,

there was little to no percent variation explained among

groups for regionalization frameworks with \7 regions,

which is the number of EDUs (data not shown because

plots are similar to those in Fig. 3). Finally, depending on

the response variable, semivariograms identified the range

of spatial autocorrelation in Michigan as 167 to 491 km

(27,889 to 241,081 km2; Fig. 4). Collectively, these results

indicate that (1) regionalization schemes with smaller and

more regions will better group similar Michigan lakes than

those with larger and fewer regions, (2) regionalization

frameworks with large or few regions ([30,000 km2 or\7

regions, respectively) are not likely to group similar

Michigan lakes, and (3) some regionalization schemes

better group similar Michigan lakes than others, regardless

of expectations based on size or number of regions. In other

words, we need to consider not just size and number of

regions but also how those regions are delineated as well as

the existing ranges of variation in landscape and lake

features.

Discussion

We have shown that regionalization frameworks can par-

tition significant amounts of variation (3% to 60%) in lake

water chemistry and clarity variables and that regionali-

zation schemes with smaller and more regions will better

group similar Michigan lakes than those with larger and

fewer regions. The amount of variation that was accounted

for depended on water quality metrics, spatial scale, and

whether all lakes or only minimally disturbed lakes were

considered. For example, when using all lakes, the varia-

tion among regions was highest for alkalinity and lowest

for Secchi and total phosphorus. Therefore, it is critical to

identify the appropriate regionalization framework for the

questions being asked, the management application, the

needs of the users, and the metrics being assessed (e.g.,

water quality, biology). In other words, it may not be

realistic to use a single regionalization scheme to meet a

variety of lake management objectives.

Although many of the regionalization frameworks

resulted in a significant amount of variation among regions,

EDUs and HUC-8s captured the most variation among lake

groups at their respective spatial scales. To better under-

stand why these two regionalization schemes capture the

most variation among lake groups, we explored the basis of

these two spatial frameworks. Although it has been argued

that HUCs are not always true topographic watersheds
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Fig. 3 Percent variation among contiguous lake groups using all

lakes versus the area of regions for (a) Secchi, (b) chlorophyll a, (c)

total nitrogen, (d) total phosphorus, (e) trophic state, and (f) alkalinity.

PRE = proportional reduction in error from the regression tree

analysis. The arrow indicates the threshold or split in the data for each

variable. See Table 1 for lake grouping scheme names, descriptions,

and number of regions. See Table 2 for water chemistry abbrevia-

tions. See Tables 1 and 3 for the number of lakes included in each

analysis.
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(Omernik 2003, Griffith and others 1999), the results of our

study suggest that HUC-8s may be sufficient approxima-

tions to topographic watersheds in Michigan for them to

group lakes for water quality. A potential mechanism

explaining why HUCs capture variation among lakes is that

lakes within the same HUC-8 can share surface water and

groundwater features through hydrologic connections. It is

interesting that EDUs are actually agglomerations of HUC-

8s based on abiotic landscape features, such as dominant

patterns of surficial geology, drainage density, and climate

(Higgins and others 2005), which is how most terrestrial

ecoregions are delineated. Therefore, EDUs represent a

hybrid approach between ecoregion and watershed delin-

eation, and they are based on attributes that influence both

regional and subregional patterns. Our results suggest that

it is not a matter of whether ecoregions or watersheds are

better at grouping lakes. Rather, both regionalization

frameworks capture some variation among lakes.

We also found that although EDUs and HUC-8s are

delineated at different spatial scales, they grouped lakes

similarly for water quality. There were relatively small

differences in the magnitude of percent variation among

lake groups, and the spatial scale that maximized among-

lake group percent variation depended on the lake variable.

This result may be especially important for lake water

quality monitoring and assessment. Depending on the

question of interest, it may be more feasible for managers

and policy makers to use the coarser-scale EDUs rather

than the finer-scaled HUC-8s to design sampling programs,

to assess lake integrity, and to set standards. For example,

Michigan’s Department of Environmental Quality is cur-

rently developing lake nutrient standards. Based on the

results of this study and the logistics involved in devel-

oping and implementing statewide standards, we have

suggested they not use a regionalization scheme for setting

lake total phosphorus standards because the percent vari-

ation among regions was low for all regionalization

frameworks, whereas we recommended they use EDUs as

their regionalization scheme for setting lake total nitrogen

standards (P. Soranno and K. S. Cheruvelil, unpublished

data, 2007).

Landscape analyses such as these are challenging in that

land use and natural hydrogeomorphic features are inter-

twined in complex ways that cannot always be

ec
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the nugget; this is part of the

semivariance caused by

autocorrelation. All variables

were natural log transformed

before analyses
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distinguished (Robertson and others 2006). We have tried

to separate these effects by using minimally disturbed lakes

to better understand natural patterns of lake water quality

metrics and to examine how different regionalization

frameworks might be driven by human land use patterns.

Although our minimally disturbed data set had fewer lakes

and a smaller geographic range (i.e., many of the mini-

mally disturbed lakes are located in Michigan’s Upper

Peninsula) than the all lake data set, the ranges and means

of the response variables were surprisingly similar between

the two. We are able to draw two major conclusions from

the results of the minimally disturbed lakes: (1) EDUs and

HUC-8s most consistently capture the most among-lake

group variation and (2) some lake water quality metrics

may not coincide well with regionalization boundaries after

removing the effects of human land use. This second

conclusion is especially important when you consider that

some regionalization schemes include human land use as a

variable used to delineate the regions, which has important

effects on water quality.

Our interpretation of the land use results make sense in

that variables, such as total nutrients may be less driven by

natural landscape features, such as climate and geology,

than by local lake features (e.g., lake depth) and human

activities (e.g., agriculture and urban land use). In contrast,

after minimizing the effects of human disturbance by

examining only minimally disturbed lakes, regionalization

boundaries should still coincide well with more conserva-

tive lake attributes such as dissolved ions or alkalinity that

are tightly linked with the landscape and less sensitive to

human disturbance, which is what we indeed found. This

latter conclusion is supported by a recent study of Kansas

lakes and reservoirs. Dodds and others (2006) found a

significant EPA level III ecoregion effect on chlorophyll,

Secchi, and total nutrients when using the entire data set,

but no ecoregion effect was detected when only reference

lakes and reservoirs were analyzed. These results highlight

the importance of carefully defining the question of interest

and the appropriate data set for analysis before deciding on

whether and which regionalization framework to include as

part of lake assessment. For example, current water quality

conditions are probably strongly influenced by human land

use and other human impacts. Therefore, regionalization

schemes based on human land use might partition patterns

of eutrophication. Alternatively, understanding the natural

potential of lakes (e.g., reference condition) to establish a

management goal (e.g., nutrient criteria) might require a

framework developed using only natural features or mini-

mally disturbed lakes.

To our knowledge, our study is just the second to

quantitatively compare the ability of different spatial

frameworks to group lakes according to water quality.

Previously, Jenerette and others (2002) found that land use

groups were able to correctly classify lakes better than

Omernik level IIIs or state boundaries using composite

water chemistry and quality variables from 365 North-

eastern United States lakes, and that ecoregions were only

18% effective at classifying lakes. We can best compare

their results with ours at the regional spatial scale when

using all lakes and the composite trophic state variable, and

on doing so our results support some of their findings. For

example, we found that Omernik L-IIIs (1987) did not

result in a significant amount of variation among lake

groups but that Human LUs resulted in a significant

amount of variation among groups. However, contrary to

the study by Jenerette and others (2002), human land use

was not the best way to group similar lakes in our study.

The fact that their and our studies come to different con-

clusions regarding the relative importance of land use for

grouping lakes may be caused by differences in how the

land use lake groups were calculated in the two studies,

differences inherent in land use patterns, or differences in

the degree to which land use influenced water quality

parameters between the two study areas.

We also cannot directly compare the results of our test

of political boundaries partitioning variance with the

Jenerette et al study because our study area was a single

large state and our political boundaries were counties; their

study area was multiple, smaller states, and their political

boundaries were states (Jenerette and others 2002). How-

ever, we were surprised to find that county boundaries at

the subregional spatial scale partitioned variance for mul-

tiple response variables. When using all lakes and

examining the combined evidence of AICC values and the

among-lake group percent variation, counties maximized

among-lake group heterogeneity as well as other lake

grouping schemes for Secchi, chlorophyll a, total phos-

phorus, and trophic state (Fig. 2B, left panel). In addition

to counties having small areas, it is possible that we are

detecting some sort of human activity signature resulting

from county-level land use planning patterns. For example,

drains in Michigan are managed at the county level and

may have an effect on lake Secchi, chlorophyll a, total

phosphorus, and overall lake trophic state.

Many researchers have pointed out how important it is

to account for the spatial structure of data (e.g., Legendre

and others 2002, Meot and others 1998), ways to do so

(e.g., Bell and others 1993, Gotway & Young 2002), and

the difficulties inherent in quantifying the spatial structure

of ecological data (Meisel & Turner 1998). When con-

ducting studies such as this one, it is important to recognize

that a regionalization framework is spatial, and as such it

assumes spatial autocorrelation of data. In fact, in many

instances, spatial aggregation is necessary to create

meaningful units of analysis (Gerritson and others 2000).

Our results from linear regressions, regression tree
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analyses, and semivariograms support the assumption that

lakes are spatially autocorrelated, with the distance ranging

from 167 to 491 km, depending on the response variable.

This conclusion means that, in general, regionalization

schemes with smaller and more regions will better group

similar lakes than those with larger and fewer regions.

However, our study quantifies these spatial relationships

for the state of Michigan and identifies interesting thresh-

olds in region size (approximately 30,000 km2) and number

of regions (n = 7). Finally, we found instances in which

particular regionalization frameworks grouped similar

Michigan lakes better or worse than would be expected

based solely on average region size or number of regions.

These results indicate that (1) we should consider how

regions are delineated, in addition to the spatial scale of

delineation, when deciding on a regionalization scheme for

lake assessment and monitoring and (2) coarse regionali-

zation frameworks are not likely to group similar lakes for

similar study areas in terms of size, geography, and ecol-

ogy. However, if we were to examine the nation as whole,

the quantification of spatial autocorrelation and the best

regionalization scheme will differ because of differences in

spatial extent, landscape and lake features. Therefore, we

need more studies across a range of geographic areas and

extents to address these questions of spatial correlation and

its influence on spatial patterns among lakes.

When we use regionalization as a framework within

which lakes are grouped for the purposes of research,

management, or regulation, we must recognize the

inherent nested data structure of lakes within regions.

Hierarchical linear modeling provides a necessary and

useful tool for such purposes because it is a statistical

modeling approach that specifically takes into account the

nested structure of data and separates the total variance

into components at each level (within- and among-lake

groups) (Wagner and others 2006). In our study, just three

regionalization schemes were nested hierarchically: (1)

RLEs (sub-subsections and subsections are nested within

sections), (2) ‘‘watersheds’’ (HUC-8s are nested within

GLBs), and (3) HUC-8s (which are nested within EDUs).

Although HLM can accommodate such nesting, it was

beyond the scope of this study to analyze these potential

three-level hierarchical relations for those regionalization

frameworks. However, our results suggest that some

hierarchical regionalization schemes are more likely to be

relevant (e.g., HUC-8s and EDUs) compared with others

(e.g., HUC-8s and GLBs).

Summary and Conclusions

We found that EDUs and HUC-8s most consistently (and

similarly) maximize within-lake group homogeneity for a

variety of water quality metrics using an all lake data set.

However, there was a significant amount of among-group

variation only for alkalinity after removing the apparent

effects of human activities by using minimally disturbed

lakes. These results will inform our ability to effectively

group lakes according to water quality to facilitate the

appropriate identification of reference conditions and allow

for the more precise assessment of water quality, aquatic

community status, and human impacts.

Our results also point to four important research areas

that must be considered in the future to improve our

understanding of the landscape ecology of lakes and to

improve the management of large groups of lakes (e.g.,

state and national lake assessments). First, similar to the

formation of EDUs, we must develop regionalization

frameworks specifically for aquatic ecosystem manage-

ment that are based on natural environmental features that

are known to drive lake variability. The fact that EDUs

were particularly effective at grouping lakes suggests that

more work could be done in this area. An important second

step is to explain variation among lakes by incorporating

local (or site-specific) and regional predictor variables into

hierarchical models that include a regionalization scheme.

Here, we identified the amount of variation that occurs at

the regional and local scales. The next step is to identify

how much of that variation can be explained by both local

and regional landscape variables (e.g., Cheruvelil 2004,

Wagner and others 2007). Third, given the importance of

spatial scale for aquatic ecosystems, we must further

increase our spatial scale to multiple states or the entire

nation to explore the effects of spatial extent, different

landscape features, and lake properties on the ability of

regionalization to group similar lakes. Finally, given the

importance of comparing an all lake data set with a mini-

mally disturbed lake data set, we will likely need to explore

better or alternate ways to define minimally disturbed

lakes. A landscape perspective provides us with the

opportunity to adapt and refine the ways in which we are

assessing and monitoring lake water quality.
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