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Abstract A classification system is often used to reduce

the number of different ecosystem types that governmental

agencies are charged with monitoring and managing. We

compare the ability of several different hydrogeomorphic

(HGM)—based classifications to group lakes for water

chemistry/clarity. We ask: (1) Which approach to lake

classification is most successful at classifying lakes for

similar water chemistry/clarity? (2) Which HGM features

are most strongly related to the lake classes? and, (3) Can a

single classification successfully classify lakes for all of the

water chemistry/clarity variables examined? We use uni-

variate and multivariate classification and regression tree

(CART and MvCART) analysis of HGM features to clas-

sify alkalinity, water color, Secchi, total nitrogen, total

phosphorus, and chlorophyll a from 151 minimally dis-

turbed lakes in Michigan USA. We developed two

MvCART models overall and two CART models for each

water chemistry/clarity variable, in each case comparing:

local HGM characteristics alone and local HGM charac-

teristics combined with regionalizations and landscape

position. The combined CART models had the highest

strength of evidence (xi range 0.92–1.00) and maximized

within class homogeneity (ICC range 36–66%) for all

water chemistry/clarity variables except water color and

chlorophyll a. Because the most successful single classifi-

cation was on average 20% less successful in classifying

other water chemistry/clarity variables, we found that no

single classification captures variability for all lake

responses tested. Therefore, we suggest that the most

successful classification (1) is specific to individual

response variables, and (2) incorporates information from

multiple spatial scales (regionalization and local HGM

variables).

Keywords Ecoregion � Regionalization �
Biogeochemistry � Water chemistry � Water clarity �
Reference conditions � Eutrophication

Introduction

Ecosystem structure and function are controlled in large

part by the hydrology, geology, land cover, and climate

characteristics of that ecosystem. These landscape features

have been used to identify similarities in temperate (Host

and others 1996) and tropical (Mora and Iverson 2002)

forests, rangelands (Kunst and others 2005), streams

(Frissell and others 1986) and their riparian zones (Vidon

and Hill 2004), wetlands (Brinson 1993), lakes (Winter

1977; Riera and others 2000), and coral reefs (Rodgers

2005). For example, Brinson (1993) outlined an approach

to wetland classification based on hydrologic and geo-

morphic features such as precipitation, groundwater flow,

and landscape position. This hydrogeomorphic (HGM)

approach was intended to provide a flexible classification

framework based on knowledge of how HGM factors drive

wetland structure and function. The accumulation of HGM

data and the advancement of analytical techniques capable

S. L. Martin (&)

Department of Geological Sciences, Michigan State University,

206 Natural Sciences, East Lansing, MI 48824, USA

e-mail: marti686@msu.edu

P. A. Soranno � M. T. Bremigan � K. S. Cheruvelil

Department of Fisheries and Wildlife, Michigan State

University, 13 Natural Resources, East Lansing, MI 48824, USA

K. S. Cheruvelil

Lyman Briggs College, Michigan State University,

35 East Holmes Hall, East Lansing, MI 48825, USA

123

Environmental Management (2011) 48:957–974

DOI 10.1007/s00267-011-9740-2

Author's personal copy



of handling complex datasets have extended the capacity of

the HGM approach, making it possible to include more

characteristics in the ecological classification of more

ecosystem types (Host and others 1996).

Researchers have been classifying lakes since the early

1900s; in fact, lake classification was the major focus of the

International Congress for Limnology in 1956 (Moss and

others 1994), and interest in this topic has continued to the

present, largely for the purpose of facilitating management.

Agencies charged with lake management often desire a

single comprehensive classification model within which

individual lakes can be easily assigned to a group. These

lake groups can then be used to help: (1) detect trends in

water chemistry over time by accounting for variation

among lake classes, (2) simplify management by grouping

lakes where similar management strategies are likely to

have similar results, and (3) set reference conditions.

Although a wide variety of approaches to classification

has been adopted, one feature common to many has been to

classify lakes based on the statistical similarity of water

chemistry variables. Such a classification approach has

been applied to lake water chemistry data in Canada

(Pitblado and others 1980; Zimmerman and others 1983),

Northeastern U.S. (Young and Stoddard 1996; Momen and

Zehr 1998; and Jenerette and others 2002) and Sweden

(Hakanson 1996; Hakanson 2005). However, these studies

have not controlled for human impacts on water chemistry.

As such, a change in human uses may result in a rapid

change in the chemical composition of the lake, and thus,

change the classification accuracy. It would be useful to

create a classification using features that change little and

are minimally impacted by human activities, such as HGM

features. Such an HGM-based classification could then be

used as the foundation upon which to evaluate the effect of

human impacts, such as changes in land use or an intro-

duction of exotic species. Therefore, knowing the role that

HGM features play in driving variation among lakes is

foundational to understanding the response of lakes to

human impacts. Additionally, because HGM-based classi-

fications are created using widely available geospatial data,

they can be effectively applied to unsampled lakes without

logistically challenging and expensive field collections.

Thus, HGM-based classifications can be used for many

more lakes than can be physically sampled (Brinson 1993;

Young and Stoddard 1996), thereby allowing inferences

and predictions to be made for individual lakes across

broad geographic regions.

Regional land classifications (i.e., regionalizations) take

advantage of the wealth of HGM data to group large

geographic regions based on the similarity of physio-

graphic, climatic and terrestrial features (Omernik 1987;

Bailey and others 1994; Albert 1995). Interestingly, unlike

these land classifications, few classifications of freshwater

systems have taken an HGM approach. One hydrologically

driven example of regionalization is the USGS hydrologic

units (HUC; ***Seaber and others 1987). HUCs are

delineated using topographical boundaries specific to a

surface drainage area and have been used as management

units by many agencies. More recent examples of HGM-

based hydrological regionalizations include hydrologic

landscape regions (HLR: Winter 2001; Wolock and others

2004) and ecological drainage units (EDU: Higgins and

others 2005). The concept of hydrologic landscapes pro-

vides an aquatic analog to the land-based regionalization

approaches, delineating land areas with similar HGM-

drivers of surface and ground water movement and storage,

specifically land-surface form, geologic texture, and cli-

matic setting (Winter 2001; Wolock and others 2004).

Alternatively, Higgins and others (2005) delineated EDUs

by combining HUC watersheds with similar climate and

landscape features. Although these regionalizations are

conceptually appealing, the few studies testing such

regionally-based lake classifications report that some crit-

ical lake water characteristics, such as nutrients and water

clarity, are not always similar among lakes within these

regions (Jenerette and others 2002; Cheruvelil and others

2008).

The concept of lake landscape position describes the

local hydrologic landscape of a lake. Lake landscape

position quantifies the hydrologic connectivity and spatial

arrangement of various freshwater systems to infer simi-

larity in ground and surface water hydrology (Kratz and

others 1997; Martin and Soranno 2006). Several metrics of

landscape position have been derived measuring various

combinations of local hydrologic connectivity to other

freshwater ecosystems (e.g., streams, lakes, wetlands).

Each of these metrics of landscape position has shown

significant relationships with important lake ecosystem

characteristics, such as acid neutralizing capacity, dis-

solved organic carbon and nitrogen to phosphorus ratio

(Kratz and others 1997; Martin and Soranno 2006). How-

ever, water clarity and productivity measures have not

shown significant relationships with landscape position

metrics (Riera and others 2000; Quinlan and others 2003;

Martin and Soranno 2006).

Although many of the above ecological classification

schemes have demonstrated some success in classifying

lakes, they do so with little regard to other important HGM

features and leave much variation to be explained. For

example, although some regionalizations successfully

group lakes with similar water quality, mechanisms that act

through local-scale variables, such as lake morphometry,

are not incorporated into such regionalizations and are

likely important for lake classification success (Cheruvelil

and others 2008). Conversely, some classification efforts

have focused on only local-scale HGM features, ignoring
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variation captured in the larger scale metrics. More recently,

there has been an emphasis on including both regional

and local scale variables simultaneously in analyses of

stream and lake characteristics (Seelbach and others 1997;

Goransson and others 2004; Stendera and Johnson 2006) and

calls for an approach that combines regional and local fea-

tures (Pyne and others 2007; Cheruvelil and others 2008).

A combined approach, however, has inherent technical

demands; it must be able to incorporate both continuous

and categorical data, and account for local scale variation

concurrently with regional scale phenomena. To date, the

majority of statistical techniques that have been employed

for classification development have used traditional linear

models, such as principal components analysis and clus-

tering (Bryan 2006). Classifications created with these

linear methods are limited statistically when including

categorical variables, such as regionalization or landscape

position. By including such spatially-explicit categories

into a larger classification framework, additional variation

in water characteristics may be captured that local HGM

data alone may miss. In addition, although linear approa-

ches have been found to accurately represent some eco-

logical relationships, these approaches may not effectively

represent non-linear relationships and may mask the true

character of the data by forcing it to conform to a linear

arrangement (De’Ath and Fabricius 2000; Robertson and

others 2006; Soranno and others 2008).

To date, few classification efforts have taken advantage

of advances in statistical methods that alleviate some of the

above mentioned shortcomings (but see Emmons and

others 1999; Olden and Jackson 2002; Robertson and

others 2006). Classification and regression tree (CART)

analysis is a non-linear recursive partitioning approach

capable of simultaneously including categorical and con-

tinuous variables (De’ath and Fabricius 2000; De’ath

2002). Groups created from a CART analysis have multiple

uses in a management framework, such as to approximate

reference conditions or to define groups of lakes that have

similar HGM settings. Lakes with similar HGM charac-

teristics are likely to respond similarly to environmental

stressors and changes, such as increases in nutrient input

from land use changes in the watershed.

The goal of our study is to develop and test several pos-

sible classifications for lake water chemistry/clarity that

incorporate HGM features over multiple spatial scales. More

specifically, management agencies often apply similar reg-

ulations and/or treatments to lakes within each lake group.

Therefore, in addition to comparing among multiple uni-

variate classifications, we also investigate the effectiveness

of creating a single classification for all water chemistry/

clarity variables using multivariate classification and

regression tree analysis. We incorporate the broad-scale

patterns captured by regional summaries of HGM features

(i.e., regionalizations) in addition to local HGM features that

are intrinsic to each lake (e.g., lake morphometry). We strive

to create a lake classification that: (a) maximizes within-class

homogeneity and between-class heterogeneity for lake water

chemistry/clarity, (b) is based on HGM features that are

temporally stable on the scale of decades to centuries,

(c) minimizes the confounding effects of anthropogenic

landscape features (e.g., human disturbances such as land

use/cover), and (d) provides an example of a broadly appli-

cable classification approach for other freshwater ecosys-

tems. We ask three questions: (1) Which HGM-based

approach to lake classification is most successful at grouping

lakes with similar water chemistry/clarity (regionalization,

landscape position, HGM features, or some combination)?

(2) Which HGM features are most strongly related to the lake

classes? and (3) Can a single lake classification successfully

group lakes for all of the water chemistry characteristics

examined? Answers to these questions can most directly

benefit the management of lakes but can also be used to

advance our understanding of how HGM features create a

template upon which other drivers of ecosystem variation,

such as human disturbance, are superimposed.

Methods

Our dataset includes 151 minimally disturbed lakes in

Michigan, U.S.A. that are greater than 20 hectares in area.

We define minimally disturbed lakes as those with no dam

or water control structure and less than 25% human land

use/cover (i.e., agriculture and urban) in the cumulative

catchment (defined below). Our study lakes had only an

average of 8% human land use/cover in the cumulative

catchment and were surrounded mostly by forest (mean

80% forested land use/cover). We chose to limit our dataset

to these lakes in order to reduce the confounding effects of

human disturbances and maximize our ability to detect

relationships with HGM characteristics (D’arcy and Cari-

gnan 1997; Stoddard and others 2006).

We obtained data on lake water chemistry/clarity during

the time period of 1975 through 1982 from the U.S. EPA

Storet database. The Michigan Department of Environ-

mental Quality sampled the epilimnion of each lake during

summer stratification (July, August, and September) for a

wide range of limnological variables: alkalinity, water

color, Secchi disk depth, total nitrogen (TN), total phos-

phorus (TP), and chlorophyll a (Chl a). The study lakes

vary widely in all variables (Table 1).

Hydrogeomorphic Characteristics

Similarly to Brinson (1993), we define HGM characteris-

tics as those linked to the geology, hydrology and
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landscape context of a study ecosystem. With technological

advancements in remote sensing and coordinated data

collection strategies, large stores of HGM data are readily

available in geographic information systems (GIS) for

many areas of the world (Johnson and Gage 1997). We

gathered geospatial data from multiple sources to create a

Table 1 Summary of lake

water chemistry/clarity and

hydrogeomorphic

characteristics for 151

minimally disturbed lakes in

Michigan USA

Variables are arranged into

broad categories. Asterisk is

used to indicate a change in

units for minimum WRT to

days. Abbreviations are listed in

parentheses. PCU platinum

cobalt units. CA:LK catchment

area to lake area ratio, CUCA
cumulative catchment area,

LOCA local catchment area

Units Min. Max. Mean SD

Water chemistry/clarity

Alkalinity mg/L 1 206 72 55

Water color PCU 1 99 14 16

Secchi m 0.8 7.9 3.4 1.3

Total nitrogen (TN) lg/L 88 1044 461 192

Total phosphorus (TP) lg/L 1.0 32.0 11.7 6.0

Chlorophyll a (Chl a) lg/L 0.2 29.0 4.3 4.4

Bedrock geology

Carbonate (B-Carb) % 0.0 100.0 12.5 32.3

Clastic (B-Clast) % 0.0 100.0 48.3 48.4

Hardrock (B-Hard) % 0.0 100.0 20.5 38.5

Iron (B-Iron) % 0.0 100.0 18.7 37.1

Surficial geology

Bedrock (S-Bed) % 0.0 100.0 3.2 16.9

Dune (S-Dune) % 0.0 37.5 0.9 4.9

Glacial till (S-Till) % 0.0 100.0 17.6 32.8

Lacustrine (S-Lacu) % 0.0 100.0 9.8 27.4

Moraine (S-Mora) % 0.0 100.0 27.7 41.2

Outwash (S-Outw) % 0.0 100.0 36.0 42.5

Peat and muck (S-PeMu) % 0.0 36.4 0.6 3.9

Lake morphometry

Lake Area (LK) km2 0.20 70.38 2.84 9.34

Shape unitless 1.1 6.3 1.9 0.7

Mean depth m 1.2 21.8 4.9 3.3

Maximum depth (Max. Depth) m 3.0 58.5 14.4 9.2

Water residence time (WRT) year 1.2* 31.6 2.5 4.2

Local catchment morphometry (LOCA)

Area km2 0.2 1759.3 52.0 182.0

Shape unitless 1.1 3.0 1.7 0.3

Slope % 0.6 4.9 2.4 1.0

Cumulative catchment morphometry (CUCA)

Area km2 0.2 1948.3 86.0 276.7

Shape unitless 0.0 2.6 0.6 0.4

Slope % 0.6 5.7 2.8 1.1

CUCA:LK ratio 0.9 2655.1 63.5 247.1

CUCA:LOCA ratio 1.0 14.4 1.6 2.2

Climate/hydrology

Precipitation cm/year 72.7 90.8 81.7 4.1

Runoff cm/year 20.3 50.8 35.8 5.5

Baseflow index (BFI) % 55 89 71 9

Wetlands

CUCA % 0 25 5 5

LOCA % 0 23 4 4

500 m buffer % 0 40 7 7

100 m buffer % 0 53 8 11
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digital HGM database for our study lakes. This database

includes data about bedrock geology, surficial geology,

lake morphometry, catchment characteristics, climate/

hydrology, and wetland land use/cover. Geology and cli-

mate/hydrology were summarized within a 500 m buffer

around each study lake. Wetlands were summarized over

four spatial scales: cumulative catchment, local catchment,

500 m buffer, and 100 m buffer.

Bedrock geology data were obtained from the Geologic

Survey Division of the Michigan Department of Envi-

ronmental Quality. Sedimentary clastic is the dominant

bedrock type in Michigan and for many of our study lakes,

but our dataset also includes lakes dominated by other

bedrock types (Table 1). Surficial geology data were

provided by the Michigan Natural Features Inventory and

Michigan Department of Natural Resources. Outwash and

moraine surficial geology types dominate the study lakes

(Table 1).

Lake area, perimeter, shape, mean depth, and maximum

depth were gathered from the bathymetric maps provided

through the Michigan Department of Natural Resources.

Mean depth was calculated by taking the average depth of

approximately 100 points evenly spaced across each

bathymetric map (Omernik and Kinney 1983). Lake shape

was calculated as the ratio of shoreline perimeter to the

circumference of a circle of the same area (Wetzel and

Likens 2000). Water residence time (WRT) was estimated

as: [(lake area*mean depth) 7 (cumulative catchment

area*runoff)]. Area, shape and slope were measured for

both local and cumulative catchment.

Cumulative lake catchments (CUCA) were delineated to

include the catchment area associated with all lakes and

streams draining into the lake using 1:100,000 resolution

stream hydrography data, digital elevation models (30 m

resolution) and topographic maps. Using the above data,

we also delineated local catchments (LOCA) as the portion

of the cumulative catchment downstream from any

upstream lake greater than 0.2 km2.

Average annual precipitation for the period 1971–2000

was obtained from the Spatial Climate Analysis Service

(www.ocs.oregonstate.edu). Average annual runoff for the

period 1951–1980 (http://water.usgs.gov/GIS/metadata/

usgswrd/XML/ofr96395_run.xml) and mean base-flow

index (BFI: http://water.usgs.gov/GIS/metadata/usgswrd/

XML/bfi48grd.xml) were obtained from USGS. These

data were summarized within the 500 m buffer and are

therefore an indication of the local scale inputs (***Gebert

and others 1987). In using both of these datasets, we

assume that runoff and baseflow values for inflowing

streams near to lakes will be similar, and that these data

provide a way to compare relative amounts of runoff and

baseflow across the lakes in our dataset rather than actual

values of runoff or baseflow.

Wetland land use/cover data (30 m resolution) were

obtained from the Michigan Resource Information Service

(http://www.ciesin.org/datasets/mirislcover/miriscov.html)

based on aerial photo interpretation of photos taken

between 1978 and 1985.

Existing HGM-Based Classifications

We included three regionalization frameworks: (1) USGS

8-digit hydrologic units (HUC: Seaber 1987), (2) ecologi-

cal drainage units (EDU: Higgins and others 2005), and

(3) hydrologic landscape regions (HLR: Winter 2001). The

location of each study lake within each region determined

the class membership. Our study lakes were located within

19 HUCs, 6 EDUs, and 5 HLRs (Fig. 1).

We included three metrics of landscape position that can

be easily measured from existing data using GIS (described

in brief here, see Martin and Soranno (2006) for more

detailed descriptions). Lake hydrology (LH) is a general

measure of lake surface hydrologic connections, incorpo-

rating both connections to streams and lakes. Our analysis

included lakes with LH categories of ‘‘S’’ seepage (lake has

no surface inlet or outlet), ‘‘I’’ inflow (lake has surface

inflow only), ‘‘IO’’ inflow-outflow (lake has both surface

inlet and outlet but no lake connections), ‘‘H’’ headwater

(lake has no surface inlet but does have outlet with

downstream lake connections), ‘‘IH’’ inflow headwater

(lake has surface inlet with no upstream lake connections

but does have downstream lake connections), ‘‘F’’ flow-

through (lake has upstream and downstream surface con-

nections to lakes), and ‘‘T’’ terminal (lake only has

upstream lake connections but has outlet). Lake network

number (LNN) measures the degree of surface connectivity

to other lakes by counting the number of upstream lakes.

Our analysis included lakes with LNN categories of ‘‘0’’

zero, one ‘‘1’’, two ‘‘2’’, three ‘‘3’’ or greater than or equal

to four ‘‘4?’’. Lake network complexity (LNC) is a mea-

sure of the complexity of connections to other lakes (e.g.,

dendritic or linear chain). Our analysis included lakes

unconnected to any other lakes, indicated by LNC cate-

gories for no stream connection ‘‘-’’ and for only stream

connection ‘‘OS’’, as well as lakes connected to other

lakes through a linear chain ‘‘LS’’ or through a dendritic

network ‘‘?’’.

Development of New Classifications

We developed and tested four new HGM-based classifi-

cations for each lake water chemistry/clarity variable

using: (1) local HGM features for each study lake (HGM)

only, and (2) local HGM features combined with existing

HGM-based classifications: regionalizations and landscape

position (HGM?). These classifications were created using

Environmental Management (2011) 48:957–974 961

123

Author's personal copy

http://www.ocs.oregonstate.edu
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ofr96395_run.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/ofr96395_run.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/bfi48grd.xml
http://water.usgs.gov/GIS/metadata/usgswrd/XML/bfi48grd.xml
http://www.ciesin.org/datasets/mirislcover/miriscov.html


two approaches: (1) classification and regression tree

(CART) analysis, and (2) multivariate classification and

regression tree (MvCART) analysis. In both tree-based

approaches, all HGM variables enter as potential splitting

variables. However, in the CART analysis, each individual

water chemistry/clarity variable is used separately as the

response whereas in the MvCART all water chemistry/

clarity variables are used simultaneously as the response.

We chose to use tree-based models because they:

(1) maximize class homogeneity, (2) do not penalize for

including many independent variables, (3) handle high-

order interactions among variables, and (4) accommodate

both continuous and categorical data (De’ath and Fabricius

2000; De’ath 2002). All CART models were built using the

recursive partitioning algorithm ‘‘rpart’’ in the R software

system (R Development Core Team, http://www.

R-project.org). All MvCART models were built using the

multivariate recursive partitioning algorithm ‘‘mvpart’’ in

the R software system (R Development Core Team,

http://www.R-project.org). Both CART and MvCART

trees were grown using 10-fold cross-validation and sub-

sequently pruned using the 1-SE rule (Breiman and others

1984; Venables and Ripley 1999). Terminal nodes (i.e.,

lake classes) were required to have a minimum of five

observations (i.e., lakes). The proportional reduction in

error (PRE) for each split was summed to produce an

overall PRE for each tree.

Output detailing splitting decisions from each tree was

reviewed to assess tree stability and correlations among

independent variables. Independent variables maximizing

class homogeneity and PRE were always selected as the

primary splitter. The top five independent variables for a

primary split, measured by class homogeneity, were con-

sidered as competitors. The top five independent variables

grouping lakes into classes similarly to the primary split,

measured by percent agreement, were considered as sur-

rogates (R Development Core Team, http://www.R-project.

org). We assessed tree stability using information about

competitor and surrogate splits, in combination. A split was

considered (1) stable if there were no competitor splits

Fig. 1 Map of the upper and

lower peninsula of Michigan,

USA. Lakes included in the

analysis are shown as solid dots.

Boundaries are shown for each

regionalization: a 8-digit USGS

hydrologic units (HUC),

b ecological drainage units

(EDU), and c hydrological

landscape regions (HLR)
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within 3% reduction in error from the primary splitter, (2)

somewhat stable/unstable if there were competitor splits

within 3% reduction in error from the primary splitter but

these competitors were also surrogates, or (3) unstable if

there were competitor splits within 3% reduction in error

from the primary splitter but these competitors were not

surrogates. Therefore, given small changes in input data (1)

stable trees are not likely to change in tree structure or class

membership, (2) somewhat stable/unstable trees may split

on different independent variables yet yield similar class

membership, and (3) unstable trees would likely yield

different tree structure and class membership.

Comparing Classifications

Two model selection statistics were used to compare

among the candidate classifications for each lake water

characteristic. First, we took an information-theoretic

approach for multi-model comparison, using Akaike

weights (xi) calculated from the corrected Akaike infor-

mation criteria (AICC) for small sample sizes (Burnham

and Anderson 2002), computed in SAS (SAS Institute

Inc.). We compared the relative support for each classifi-

cation using Akaike weights (xi). These weights sum to

equal 1 and are interpreted as the probability that a model

is the best model relative to others included in the analysis

(Johnson and Omland 2004). Second, we used the intra-

class correlation coefficient (ICC) to compare the ability of

each of the classifications to maximize class homogeneity

for each dependent variable (Donner and Koval 1980). This

type of correlation has been widely used in social sciences

and has more recently appeared in environmental sciences

in terms of hierarchical linear models (Cheruvelil and

others 2008). We calculated the ICC from the error terms

of a one-way ANOVA with random effects:

Yij ¼ c00 þ rij þ u0j

where, Yij = observation of dependent variable for lake i in

lake group j, c00 = grand mean of the dependent variable,

rij = random error term for lake i in lake group j, where

rij * N(0, r2) and r2 represents the within-group error in

the dependent variable, u0j = random error term for lake

group j, where u0j * N(0, s00)and s00represents the

among-group error in the dependent variable. The ICC is

the amount of the total variance that is among groups:

ICC ¼ s
^

00= s
^

00 þ r
^2

� �

A successful classification has a high ICC, meaning that

a large amount of the variation is among the groups created

from the classification, maximizing class homogeneity. All

variables used in linear techniques (i.e., ANOVA) were

transformed to meet normality assumptions.

We used the Akaike weights and the ICC to compare the

success of each of the three regionalization frameworks

(HUC, EDU, HLR), each of the three landscape position

metrics (LH, LNN, LNC), our two CART models (HGM,

HGM?), and our two MvCART models (HGM, HGM?)

for classifying each of the six lake water characteristics

included in this study (alkalinity, water color, Secchi, total

nitrogen, total phosphorus, and chlorophyll a). We also

used the PRE to compare among tree-based models.

To determine which HGM features were related to the

lake classes, we further analyzed the splitting decisions of

the tree-based models. We compared which HGM vari-

ables were chosen as primary, competitor, and surrogate

splits in each CART model. We also analyzed the stability

of each model using the detailed CART output.

We took two approaches to determine the success of

using a single classification for all water chemistry/clarity

variables: (1) an assessment of classification success of

each of the two MvCART classifications (HGM and

HGM?) when applied to each individual water chemistry/

clarity variable, and (2) an assessment of classification

success for each water chemistry/clarity variable when

classified using CART models built for other water

chemistry/clarity variables. First, although the MvCART

models are parameterized for a multivariate combination of

all six water chemistry/clarity variables, classification

success (as measured by ICC values) is specific to each

individual water chemistry/clarity variable. Thus, we cal-

culated ICC values separately for each water chemistry/

clarity variable using the HGM and HGM? MvCART

models, and compared the ability of these multivariately-

derived models to build homogenous groups for each

individual water chemistry/clarity variable. Second, we

took a similar approach with the HGM and HGM? CART

models. Unlike the MvCART models, the CART models

were parameterized independently for each lake water

chemistry/clarity variable. Therefore, we could use the

splitting rules from each response variable-specific CART

to group lakes for each other response variable. For

example, an HGM or an HGM? CART model built spe-

cifically for alkalinity could be evaluated as a candidate

classification model for each of the other lake water

chemistry/clarity variables (i.e., water color, Secchi, TN,

TP, and Chl a). The ICC could then be calculated and used

to compare among all other models.

Results

Comparing Classifications

Classification success, indicated by class homogeneity and

quantified by the ICC, ranged from 0% to 72% across all
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Table 2 Summary of model selection statistics for candidate classifications per lake water characteristic

Lake water characteristic Type Name ICC K AICC DAICC xi

Alkalinity Regionalization HUC 63 19 1545 38 0.00

EDU 50 6 1586 79 0.00

HLR 14 5 1626 119 0.00

Landscape Pos. LH 34 7 1598 91 0.00

LNN 32 5 1609 102 0.00

LNC 22 4 1617 110 0.00

CART HGM 56 4 1542 35 0.00

HGM? 66 3 1515 8 0.02

MvCART HGM 57 4 1544 37 0.00

HGM1 72 5 1507 0 0.98

Water color Regionalization HUC 17 19 404 43 0.00

EDU 14 6 396 35 0.00

HLR 15 5 403 42 0.00

Landscape Pos. LH 9 7 402 41 0.00

LNN 4 5 409 48 0.00

LNC 9 4 401 40 0.00

CART HGM 46 4 361 0 0.92

HGM? 54 4 366 5 0.08

MvCART HGM 10 4 404 43 0.00

HGM? 17 5 398 37 0.00

Secchi Regionalization HUC 0 19 522 68 0.00

EDU 4 6 523 69 0.00

HLR 0 5 524 70 0.00

Landscape Pos. LH 5 7 521 67 0.00

LNN 2 5 524 70 0.00

LNC 10 4 520 66 0.00

CART HGM 54 3 474 20 0.00

HGM1 50 5 454 0 1.00

MvCART HGM 4 4 523 69 0.00

HGM? 6 5 520 66 0.00

TN Regionalization HUC 13 19 182 57 0.00

EDU 5 6 187 62 0.00

HLR 0 5 185 60 0.00

Landscape Pos. LH 2 7 187 62 0.00

LNN 0 5 185 60 0.00

LNC 1 4 187 62 0.00

CART HGM 21 2 172 47 0.00

HGM1 47 6 125 0 1.00

MvCART HGM 12 4 179 54 0.00

HGM? 4 5 185 60 0.00

TP Regionalization HUC 13 19 291 46 0.00

EDU 3 6 294 49 0.00

HLR 2 5 295 50 0.00

Landscape Pos. LH 7 7 291 46 0.00

LNN 0 5 293 48 0.00

LNC 8 4 291 46 0.00

CART HGM 47 2 250 5 0.08

HGM1 39 3 245 0 0.92
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classification approaches and all lake water chemistry/

clarity variables (Table 2). Across lake water chemistry/

clarity variables, alkalinity was classified most successfully

(ICC mean 47%, range 14–72%), followed by water color

(ICC mean 20%, range 4–54%). Secchi disk depth and

measures of lake productivity were classified least suc-

cessfully (ICC mean \12%) with 6 classification failures

(ICC = 0%; Table 2).

For each lake water chemistry/clarity variable evaluated,

we observed that one model received an Akaike weight

greater than 0.9, and all other models received very low

weights, less than 0.1 (Table 2). Thus, only one classifi-

cation was supported by the data for each lake water

chemistry/clarity variable, with supported models differing

among the variables. No regionalization or metric of

landscape position alone was supported as a suitable clas-

sification of any of our response variables, as AICC values

were substantially higher than most CART models. Among

all classification approaches and all lake water chemistry/

clarity variables, with the exception of alkalinity, CART

models had the highest strength of evidence (xi range

0.92–1.00) and were the most successful at maximizing

within class homogeneity (ICC range 36–66%). Alkalinity

was classified best when using the MvCART approach in

combination with HGM? predictors (Table 2). Among

CART and MvCART approaches, HGM? models had

more AICC support than HGM models for a majority of

lake water chemistry/clarity variables. Only two lake water

chemistry/clarity variables (water color and Chl a) had a

higher weight of evidence for HGM models. The

HGM? CART model for Chl a did not differ from the

HGM CART model and, therefore, was not included in

comparisons of model fit (indicated by ‘‘n/a’’ in Table 2).

Class homogeneity (ICC) was not always maximized by

the most parsimonious model, as indicated by AICC

(Table 2). According to weight of evidence, the best clas-

sification for water color, Secchi, and TP had ICC’s 12%,

4%, and 8%, lower, respectively, than the maximum ICC

for that lake water characteristic.

Relationships Between Hydrogeomorphic Features

and Lake Classes

HGM CART models divided the study lakes into between

2 and 4 lake classes, capturing between 16% and 53% of

the variation among lakes (PRE, Fig. 2). Measures of lake

morphometry were the most frequent classifiers across

HGM CART models (4 of 6 models). Mean depth, in

particular, was the most important feature driving HGM

CART models of lake productivity, with water residence

time and maximum depth also included in some models.

Various measures of catchment morphometry were

important in classifying alkalinity and water color. The

proportion of the local catchment in wetlands was the most

important classifier for water color and Chl a. Geology and

climate variables were present in only one model each (Chl

a and alkalinity, respectively).

HGM? CART models divided the study lakes into

between 3 and 6 lake classes, capturing between 30%

and 60% of the variation among lakes (Fig. 3). All

Table 2 continued

Lake water characteristic Type Name ICC K AICC DAICC xi

MvCART HGM 3 4 294 49 0.00

HGM? 13 5 285 40 0.00

Chlorophyll a Regionalization HUC 13 19 382 27 0.00

EDU 9 6 378 23 0.00

HLR 7 5 382 27 0.00

Landscape Pos. LH 1 7 386 31 0.00

LNN 0 5 384 29 0.00

LNC 1 4 386 31 0.00

CART HGM 36 4 355 0 1.00

HGM? n/a n/a n/a n/a n/a

MvCART HGM 1 4 386 31 0.00

HGM? 9 5 381 26 0.00

Classification type is indicated as regionalization, landscape pos. (position), or CART. Individual classification names are indicated within each

classification type. Intra-class correlation coefficients (ICC) are presented as percent of total variance that is among the classes. A high ICC

indicates high within class homogeneity and thus, high classification success. The number of classes per classification model (K) is presented.

DAICC is the difference between the AICC for each model and the minimum AICC for each lake water characteristic. The DAICC will equal 0 for

the best model per lake water characteristic. The Akaike weights (xi) sum to 1 for each lake water characteristic and is interpreted as the

likelihood that a given model is the best model relative to others included in the analysis. n/a, not applicable

Classifications with the most support are indicated in bold font
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HGM? CART models (except Chl a) explained more

variation than HGM CART models: alkalinity by 6%,

water color by 11%, Secchi by 12%, TN by 30%, and TP

by 8%. All HGM? CART models (except Chl a) included

the regionalization framework HUC as an important clas-

sifier (Figs. 2 and 3). No landscape position metrics were

included as important classifiers in any of these models. As

with HGM CART models, measures of lake morphometry

were frequently important classifiers across HGM? CART

models (4 of 6 models), followed by catchment mor-

phometry and wetlands (2 of 6 models each). The pro-

portion of clastic bedrock geology type was present in the

HGM? CART model for TN. Climate was not included as

an important splitting variable in any of the HGM? CART

models. The tree structure for most lake water chemistry/

clarity variables was similar when comparing between

HGM CART models and HGM? CART models (Figs. 2

and 3). Most notably, the HGM? CART model of Chl

a did not include any regionalizations and was, therefore,

identical to the HGM CART model. HGM CART and

HGM? CART models for Secchi and TP shared initial

structure and classification variables, differing only by the

addition of HUC as the last classifier. Alternatively, the

HGM features driving the two CART classifications of

water color were from the same broad categories; however,

different variables represented these categories. More

specifically, for the HGM CART model of water color,

catchment morphometry was represented by both the ratio

of cumulative catchment area to local catchment area

(CUCA:LOCA) and the ratio of cumulative catchment area

to lake area (CA:LK), whereas in the HGM? CART

model, catchment morphometry was represented by one

variable (cumulative catchment shape, CUCA shape).

Despite these similarities, there were also some striking

differences between HGM CART models and

HGM? CART models. For example, all HGM features

included in the HGM CART model for alkalinity were

completely replaced by regionalizations in the HGM?

CART model, with the 1st split (HUC) explaining 50% of

the variation (Figs. 2 and 3). In another example, the tree

structure for the HGM? CART model for TN is quite

different than the HGM CART model, although lake

morphometry is still important for classifying TN in both

models. Catchment morphometry and bedrock geology are

additional HGM features included in the HGM? CART

model of TN, increasing the number of classes created

from 2 in the HGM CART model to 6 in the

HGM? CART model.

MvCART models showed some similarities to the

variable-specific CART models, most noticeably between

(A) Alkalinity (overall PRE 0.53) (B) Water color (overall PRE 0.38)  (C) Secchi (overall PRE 0.33)

(D) TN (overall PRE 0.16) (E) TP (overall PRE 0.22) (F) Chl a (overall PRE 0.30)   

 C: 23 (42)  

 A: 127 (39) 

CUCA Area (0.36)

 < 28.6 km2  > 28.6 km2

Runoff (0.11) 

 B: 86 (32) 

 > 14 cm/yr  < 14 cm/yr

 D: 58 (38)  

LOCA Area (0.06) 

 < 4.6 km2  > 4.6 km2 

A: 8.5 (89) 

B: 37.9 (16) 

C: 8.6 (20) D: 21.4 (26) 

LOCA wetlands ( 0.17) 

CUCA:LOCA ( 0.16)

CUCA:LK ratio ( 0.05)

> 4.4% < 4.4%

< 1.0 > 1.0

> 8.1< 8.1

A: 8.5 (89) 

B: 37.9 (16) 

C: 8.6 (20) D: 21.4 (26) 

LOCA wetlands ( 0.17) 

CUCA:LOCA ( 0.16)

CUCA:LK ratio ( 0.05)

> 4.4% < 4.4%

< 1.0 > 1.0

> 8.1< 8.1

B: 2.8 (70) 

A: 5.2 (18) 

Mean depth (0.24) 

< 7.8 m > 7.8 m

WRT (0.09)

C: 3.6 (63) 

< 1.1 yr > 1.1 yr 

B: 2.8 (70) 

A: 5.2 (18) 

Mean depth (0.24) 

< 7.8 m > 7.8 m

WRT (0.09)

C: 3.6 (63) 

< 1.1 yr > 1.1 yr 

A: 392 (83) B: 546 (68) 

Mean depth (0.16) 

> 3.6 m < 3.6 m

A: 392 (83) B: 546 (68) 

Mean depth (0.16) 

> 3.6 m < 3.6 m

A: 7.7 (50) B: 13.7 (101) 

Mean depth (0.22)

> 5.1 m < 5.1 m

A: 7.7 (50) B: 13.7 (101) 

Mean depth (0.22)

> 5.1 m < 5.1 m A: 2.8 (74) 

B: 2.6 (22) 

C: 6.0 (46) D:12.0 (9) 

LOCA wetlands (0.11)

Max. depth (0.10) 

S -Till ( 0.09)

> 3.2% < 3.2%

> 15.4 m < 15.4 m

> 41%< 41% 

A: 2.8 (74) 

B: 2.6 (22) 

C: 6.0 (46) D:12.0 (9) 

LOCA wetlands (0.11)

Max. depth (0.10) 

S -Till ( 0.09)

> 3.2% < 3.2%

> 15.4 m < 15.4 m

> 41%< 41% 

Fig. 2 Results from the CART analysis of local hydrogeomorphic

features (HGM) for classifying lake water characteristics: a alkalinity,

b water color, c Secchi, d TN, e TP, and f Chl a. Each split is labeled

with the splitting variable (see Table 1 for abbreviations), and

proportional reduction in error (PRE). Branches are labeled with

splitting value. Terminal nodes (rectangles) represent lake classes and

are labeled with an alphabetical class, class mean, and number of

lakes per class (in parentheses)
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the >HGM MvCART and HGM CART for alkalinity

(Figs. 2a, 4a). These two models are almost identical in

splitting variables and values, as well as number of ter-

minal nodes and observations per node. Only the last split

differs in the splitting value for local catchment area

(Figs. 2a, 4a).

Similarities between the HGM? MvCART and the

variable-specific CART models are less obvious but are

present. HUC is the 1st split for the HGM? MvCART as

well as the alkalinity and TN HGM? CART models

(Figs. 3a, d, 4b). However, an analysis of the competitor

and surrogate splits (data not shown) reveals cumulative

(A) Alkalinity (overall PRE 0.59) (B) Water color (overall PRE 0.49)  (C) Secchi (overall PRE 0.45)

(D) TN (overall PRE 0.46)  (E) TP (overall PRE 0.30) (F) Chl a (overall PRE 0.30)   

HUC (0.50)

EDU (0.09)

 B: 35 (77)  

 A: 133 (43) 

 C: 78 (34)  

Mean Depth (0.24)

WRT (0.09)

HUC (0.07) HUC (0.05)

 B: 2.4 (50)  

 C: 3.6 (20)  

 A:  5.2 (18) 

 E: 4.1 (27) 

 D: 3.2 (36)  

 < 7.8 m  > 7.8 m

 < 1.1 yr  > 1.1 yr 

 A: 7.7 (50)  HUC (0.08)

Mean depth (0.22)

 B: 11.0 (38)   C: 15.3 (63) 

 > 5.1 m  < 5.1 m 

HUC ( 0.17) 

A: 298 (29) 

Max. Depth (0.08)Max. Depth (0.09)

CUCA:LOCA (0.06) 

D: 413 (56) B-Clast (0.06)

< > 

> 1.0 < 1.0

E: 405 (8) F: 657 (12) 

< 0.4%> 0.4%

C: 681 (23) 

B: 481 (23) 

< > 10.4 m16.6 m

HUC ( 0.17) 

A: 298 (29) 

Max. Depth (0.08)Max. Depth (0.09)

CUCA:LOCA (0.06) 

D: 413 (56) B-Clast (0.06)

< > 

> 1.0 < 1.0

E: 405 (8) F: 657 (12) 

< 0.4%> 0.4%

C: 681 (23) 

B: 481 (23) 

< > 10.4 m16.6 m A: 2.8 (74) 

B: 2.6 (22) 

C: 6.0 (46) D:12.0 (9) 

LOCA wetlands (0.11) 

Max. depth (0.10) 

S -Till (0.09)

> 3.2% < 3.2%

> 15.4 m < 15.4 m

> 41%< 41% 

A: 2.8 (74) 

B: 2.6 (22) 

C: 6.0 (46) D:12.0 (9) 

LOCA wetlands (0.11) 

Max. depth (0.10) 

> 3.2% < 3.2%

> 15.4 m < 15.4 m

> 41%< 41% 

LOCA Wetlands (0.17) 

 A: 8.5 (89) 

 B: 14.0 (39) 

 C: 22.4 (15)   D: 56.6 (8) 

HUC (0.16) 

CUCA Shape (0.16)

 < 4.4%  > 4.4% 

 < 0.384 > 0.384 

Fig. 3 Results from the CART analysis combining regionalization,

landscape position and local hydrogeomorphic features (HGM?) in

classifying lake water characteristics: a alkalinity, b water color,

c Secchi, d TN, e TP, and f Chl a. Each split is labeled with the

splitting variable (see Table 1 for abbreviations), and proportional

reduction in error (PRE). Branches are labeled with splitting value.

Terminal nodes (rectangles) represent lake classes and are labeled

with an alphabetical class, class mean, and number of lake per class

(in parentheses)

(A) HGM (overall PRE 0.58) (B) HGM+ (overall PRE 0.66)  

 C: 40 (38)  

 A: 151 (39) 

CUCA Area (0.40)

 < 28.6 km2  > 28.6 km2

Runoff (0.09) 

 B: 103 (32) 

 > 14 cm/yr  < 14 cm/yr 

 D: 83 (42)  

LOCA Area (0.09) 

 < 3.2 km2  > 3.2 km2 

 D: 78 (45) 

 B: 186 (14) 

HUC (0.44)

LOCA Area (0.12)

 C: 44 (42)  

 > 3.3 km2  < 3.3 km2

 E: 113 (21) 

LH (0.04)

CUCA:LK ratio (0.06)

 A: 132 (29) 
 < 53  > 53 

Fig. 4 Results from the MvCART analysis for classifying lake water

characteristics using: a local hydrogeomorphic features (HGM), and

b regionalization, landscape position and local hydrogeomorphic

features (HGM?). Each split is labeled with the splitting variable (see

Table 1 for abbreviations), and proportional reduction in error (PRE).

Branches are labeled with splitting value. Terminal nodes (rectangles)

represent lake classes and are labeled with an alphabetical class, class

mean, and number of lake per class (in parentheses)
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catchment area as a surrogate for HUC in the HGM?

MvCART model, showing further similarities with the

alkalinity HGM CART. Moreover, the cumulative catch-

ment area splitting value is the same as the HGM

MvCART and the alkalinity-specific HGM CART. There-

fore, switching the 1st split in the HGM? MvCART model

from HUC to cumulative catchment area is likely to rep-

licate the HGM MvCART model, which also mirrors the

HGM CART model for alkalinity as detailed above. In

summary, the HGM? MvCART, HGM MvCART, and the

HGM CART for alkalinity are all very similar in splitting

decisions to one another. Therefore, because the MvCART

models mimic the alkalinity-specific HGM CART in

splitting decisions and receive no support from the Akaike

weights for any water chemistry/clarity variables except

alkalinity, we will not continue with further analysis of the

MvCART models.

Evaluation of CART Tree Stability

Evaluating competitor and surrogate splitting options

available in the detailed output from tree-based analyses

can give a sense of the stability of a classification model.

Some classification splits can be labeled as unstable (mul-

tiple competitors with none being surrogates, further detail

in Methods), thereby indicating a sensitivity of the resulting

classification to the particular observations used to build the

classification. For example, HUC is the most important

classifier in the HGM? CART model for TN. However,

two other variables explain approximately 3% less variation

than HUC and do not serve as surrogates (data not shown).

Using our methods, this split can be labeled ‘‘unstable’’ and

highly dependant on the input data. In contrast, we label the

2nd split in the TN HGM? CART model as ‘‘somewhat

stable’’ because mean depth explained only slightly less

variation (*2%) than maximum depth, the primary splitter

at this node. In this case, however, mean depth acts as a

surrogate for maximum depth since the majority (94%) of

lakes would follow the same splitting path under either

scenario. Therefore, this split is likely to be less dependent

upon the specific dataset used in the analysis and can be

considered stable. Over all 32 splits created in the CART

models, 28% of splits were stable, 31% were somewhat

stable/unstable, and 41% were unstable. These unstable

splits are specific to our study lakes and details about these

splits, such as splitting variable and splitting value, should

be used with extreme caution.

A Single Classification for All Lake Water Chemistry/

Clarity Variables

The power of MvCART is that it is capable of creating a

single classification for all response variables. However,

classification success will still vary across response vari-

ables. Our HGM and HGM? MvCART models ranged in

ICC from 72% to 1%, with all but alkalinity classified with

low success (ICC \ 13%; Table 2). Our results show that

both MvCART models for alkalinity can be reduced down

to the HGM CART model, and no other water chemistry/

clarity variables were successfully classified by either

MvCART model.

In addition to using MvCART to investigate a single

classification for all water chemistry/clarity characteristics,

we compared the classification success of variable-specific

CART models for classifying other lake water chemistry/

clarity variables. Table 3 is a matrix of ICC values from

variable-specific HGM and HGM? CART models (rows)

when used to classify each water chemistry/clarity variable

(columns). Therefore, classifying alkalinity using the

alkalinity-HGM CART model has the same ICC value as

reported in Table 2 (i.e., 56). In contrast, using the splitting

rules from the alkalinity-HGM CART, but then comparing

water color values among lakes yields an ICC of 7. Thus,

the alkalinity-HGM CART model performs very poorly for

grouping lakes with similar water color.

Table 3 also includes columns for the mean ICC across

all water chemistry/clarity variables for each CART model

and rank of the mean. The mean ICC across water chem-

istry/clarity variables for the Secchi-HGM CART model

ranked highest at 38% (Table 3). Class homogeneity varied

slightly for most lake water chemistry/clarity variables

when classified by the Secchi-HGM CART model in

comparison to the variable-specific CART models.

Homogeneity increased for water color (1%), Secchi (4%),

and Chl a (2%), and decreased only a moderate amount for

TN (6%) and TP (8%). However, the class homogeneity

decreased much more for alkalinity (50%). Simple corre-

lations indicate that Secchi is significantly correlated to all

lake water chemistry/clarity variables, except alkalinity

(Table 4). Our results show that using the best overall

variable-specific CART model to classify other water

chemistry/clarity variables has reasonable success for those

variables that are correlated but is not successful for non-

correlated variables.

Although most lake water chemistry/clarity variables

were significantly correlated with one another (Table 4),

classification success varied widely when a single classi-

fication was used for all variables (Table 3). For example,

alkalinity was significantly correlated with water color, TP,

and Chl a (Table 4). However, neither of the alkalinity

CART models successfully classified any other variable

(mean ICC excluding alkalinity: HGM 6%, HGM? 5%;

Table 3). In another example, water color had the highest

correlation with all lake water chemistry/clarity variables

(except TP, Table 4), yet water color CART models ranked

low for overall classification success (HGM rank 8, HGM?
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rank 5; Table 3). Therefore, correlations among lake water

chemistry/clarity variables did not predict classification

success across all variables.

Discussion

There are three main conclusions that follow from our

results. First, although some lake water chemistry/clarity

variables were classified most successfully by local HGM

features alone, most lake water chemistry/clarity variables

were best classified when models included local HGM

variables and one or more regionalization. This first con-

clusion highlights that water chemistry/clarity variables are

influenced over multiple spatial scales. Second, lake and

catchment morphometry plays a dominant role in struc-

turing the classifications for the lake water chemistry/

clarity variables. Third, creating a single classification for a

wide range of response variables is not a straight-forward

process and can severely erode the classification success

for some water chemistry/clarity variables. Overall, because

it is important for management agencies to balance the

logistics and the effectiveness of classification, we suggest

that the most successful classification system is (1) devel-

oped for a specific objective, such as watershed manage-

ment, and (2) capable of incorporating information at

multiple spatial scales and from a variety of different

sources (regionalization and local HGM variables). We

found that CART models effectively modeled the complex

interrelationships among our explanatory variables and are

thus a useful tool for the classification of lakes.

Comparing Classifications

Our results agree with previous studies showing that most

lake water chemistry/clarity variables are not similar within

many areas delineated by regionalizations (Jenerette and

others 2002; Cheruvelil and others 2008). Regionalizations

alone had poor classification success for all lake water

chemistry/clarity variables, except alkalinity, which was

Table 3 Summary of the intraclass correlation coefficients (ICCs) for CART models across lake water characteristics

CART model Lake water characteristic Mean Rank

Alkalinity Water color Secchi TN TP Chl a

Alkalinity-HGM 56 7 5 12 5 1 14 11

Alkalinity-HGM? 66 9 0 5 5 8 16 10

Water color-HGM 1 46 22 12 12 11 17 8

Water color-HGM? 22 54 50 7 9 11 26 5

Secchi-HGM 16 47 54 41 31 38 38 1

Secchi-HGM? 25 39 50 31 29 27 34 2

TN-HGM 5 14 19 21 26 12 16 9

TN-HGM? 22 38 36 47 40 12 33 3

TP-HGM 13 31 29 24 47 23 28 4

TP-HGM? 17 28 23 18 39 24 25 6

Chl a-HGM 6 31 19 15 20 36 21 7

CART models are listed by the original dependant variable and type of classification. Variable-specific classifications with most support (as

shown in Table 2) are indicated in bold font. Mean ICC across lake water characteristics is computed. Rank of mean ICC is listed. See Table 2

for acronyms

Table 4 Pearson product-moment correlation coefficients for lake water chemistry/clarity

Lake water chemistry/clarity Lake water chemistry/clarity

Alkalinity Secchi Water color TN TP Chl a

Alkalinity –

Secchi 0.10NS –

Water color -0.22** -0.66*** –

TN -0.02NS -0.45*** 0.48*** –

TP -0.17* -0.50*** 0.53*** 0.59*** –

Chl a -0.21** -0.46*** 0.52*** 0.38*** 0.39*** –

*** P \ 0.001, ** P \ 0.01, * P \ 0.05, NS, not significant (P [ 0.05)

Environmental Management (2011) 48:957–974 969

123

Author's personal copy



classified well by HUCs and EDUs. Moreover, our alka-

linity HGM CART model split on some characteristics that

are more indicative of regional-scaled processes, such as

climate. In another study of Michigan lakes, Martin and

Soranno (2006) found strong relationships between land-

scape position and alkalinity. However, our results show

that this relationship is comparatively weak in contrast to

classifications based on broader-scale regionalizations. For

example, landscape position (specifically, LH), explained

21% less variation than HUC in the 1st split of the alka-

linity HGM? model. These results may indicate that as the

spatial scale of the classifying feature grows (LH \ HUC),

the explanatory power for variation in alkalinity also grows

(29% LH, 50% HUC). Therefore, while landscape position

does account for some variation, alkalinity may be

responding to phenomena that act over larger spatial scales,

such as those captured by regionalizations (Griffith and

others 1987; Cheruvelil and others 2008).

While regionalization alone is insufficient for effective

classifications, using a combination of regional and local

scale variables (i.e., HGM?) to classify lakes also per-

formed better than the local only models (i.e., HGM).

Overall, our results show that models incorporating mul-

tiple spatial scales (i.e., those combining regionalizations

with local HGM features) successfully classified most lake

water characteristics. However, in some cases, the addition

of regionalizations did not change or even decreased

classification success. For example, the HGM and

HGM? CART models for Chl a were the same (discussed

below). In another example, although adding HUC to the

model of water color increased the ICC by 8%, this

increase in classification success was also accompanied by

a decrease in model parsimony, as indicated by the Akaike

weights. Thus, most but not all water chemistry/clarity

variables are best modeled by HGM features measured

over multiple spatial scales (i.e., HGM? CART).

Our models of lake nutrient and water clarity variables

seem to indicate a regional phenomenon not captured

through local HGM characteristics. More specifically, the

best classifications for Secchi, TN, and TP all included the

HUC regionalization in addition to lake morphometry

features. These results agree with previous findings sug-

gesting that local HGM features, such as lake morphome-

try, are strong drivers of some lake productivity and water

clarity variables (e.g., Vollenweider 1968; see Brett and

Benjamin 2008 for a review). However, our results are

novel in that they also show that most of these lake water

characteristics respond to additional phenomena acting at

larger spatial scales that are captured in regionalizations.

Our results support the conjecture that a multi-scale clas-

sification system will be most successful for classifying

lake water characteristics (Hakanson 2005; Stendera and

Johnson 2006; Pyne and others 2007).

Relationships Between HGM Features and Lake

Classes

HGM features important for splitting lake classes in CART

models are similar to what we would expect based on

previous studies on the relationships between lake water

chemistry/clarity variables and lake morphometry (Fee

1979; Halsey and others 1997) and catchment morphom-

etry (Wolock and others 1989; Rasmussen and others 1989;

Hakanson 2005). Overall, we found that catchment features

dominated the classification of alkalinity and water color

whereas measures of lake morphometry were the most

important classifiers of nutrients and Secchi.

Studies have previously reported that catchment mor-

phometry is strongly related to lake productivity (D’arcy

and Carignan 1997; Hakanson 2005); however, none of our

classifications based solely on HGM features included any

catchment morphometry features as 1st tier primary splits

for productivity variables. One measure of catchment

morphometry (CUCA:LOCA) was included as a 3rd tier

primary split in the HGM? CART model for TN. How-

ever, this variable explained little variation (6%), and was

in competition with wetland presence at two spatial scales

(data not shown). Moreover, catchment morphometry was

not a strong competitor to split HGM CART models for

nutrients (TN: no competitor with mean depth, TP: weak

competitor explaining 15% less variation than mean depth).

Inconsistencies among studies may be due in part to dif-

ferences inherent in the underlying ecological relationships

of the study regions. For example, our study lakes were ten

times larger in surface area and spanned a wider range of

mean depth, maximum depth, and water residence time

than the lakes studied by D’arcy and Carginan (1997). Our

study lakes were also larger and deeper with a longer WRT

than the lakes studied by Hakanson (2005). Therefore,

further study is required to more fully describe the rela-

tionship between catchment morphometry and lake

productivity.

Wetland cover may be important for the dynamics of

many lake water chemistry/clarity variables such as water

clarity and productivity. In fact, previous studies report that

wetlands act as a source of colored compounds (Detenbeck

and others 1993; Halsey and others 1997; Prepas and others

2001). Our results show a positive relationship between

wetlands and water color (Pearson r range 0.28 to 0.43 over

all spatial scales, all P-values \ 0.01), supporting these

studies. Moreover, wetlands were the strongest classifier of

water color in our study lakes, explaining more than WRT

and groundwater input. These results suggest that water

color in these minimally disturbed lakes may be more

affected by source wetlands rather than by internal pro-

cessing or by groundwater delivery, which contrasts with

other studies (Rasmussen and others 1989; Hakanson 2005;
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Webster and others 2008). We also found wetland land

cover to be the strongest classifier of Chl a. The observed

positive correlation (r = 0.34, P-value \ 0.0001) between

wetlands and Chl a may be an indirect result of a positive

association between wetlands and TP (r = 0.23, P-value \
0.01) and TN (r = 0.24, P-value \ 0.01). Previous studies

have shown that different wetland types (e.g., bog, fen) can

play different roles in nutrient dynamics, with some serving

as a source and others as a sink of phosphorus (Detenbeck

and others 1993; Halsey and others 1997; Prepas and others

2001). Our results may indicate that our study lakes are

responding to the confounding roles that wetlands can play

in lake productivity, by both facilitating productivity

through nutrient supply and by creating colored compounds

that limit productivity through shading. However, finer-

resolution data measuring the presence of different wetland

types would be required to fully evaluate the role of wet-

lands in these lake dynamics.

It is also interesting to note that the water color and Chl

a lake classes were split on a very small amount of wetlands

(local catchment wetlands at 4% and 3%, respectively). One

study reports that a much greater presence of wetlands in a

catchment (*[50%) is needed before detecting significant

relationships with water chemistry characteristics (Prepas

and others 2001). However, other studies report much lower

thresholds (6-25%) beyond which wetland presence

becomes important (Dillon and others 1991; D’arcy and

Carignan 1997; Canham and others 2004).

We also compared wetland cover measured over four

spatial scales (cumulative catchment, local catchment,

500 m buffer, and 100 m buffer) and found that the pro-

portion of wetlands in the local lake catchment was the

only scale represented in any of the final CART classifi-

cations (water color and Chl a). However, analysis of tree

stability shows that other spatial scales act as competitor

and/or surrogate splits for all lake water water/chemistry

variables (except alkalinity). In some cases, there were

only small losses in explanatory power when choosing

other spatial scales. For example, cumulative catchment

wetland cover explained 2% and 0.5% less than local

catchment wetland cover in the HGM models for water

color and Chl a, respectively. Moreover, cumulative

catchment wetland cover had 96% and 98% classification

similarity with local catchment wetland cover. Although

our results show that wetland presence at the local catch-

ment scale is the strongest classifier for our study lakes, our

results support other studies finding little difference in

explanatory power between wetland cover measured at

different spatial scales (Gergel and others 1999; Strayer

and others 2003; Canham and others 2004). Therefore,

additional investigations are needed to more fully under-

stand the scale and magnitude of wetland presence that is

important for lake ecosystem dynamics.

A Single Classification for All Lake Water Chemistry/

Clarity Variables

Our results show that a lake classification model capable of

successfully classifying lakes for all water chemistry/clar-

ity variables likely does not exist. By comparing various

multivariate and univariate classification approaches, we

found that the most successful single classification for the

lake water chemistry/clarity variables that we analyzed was

Secchi HGM CART. As a measure of overall water clarity,

Secchi can represent the expression of many water chem-

istry/clarity variables, such as nutrients, Chl a, DOC and

turbidity. Therefore, it is appropriate that this integrated

measure of water quality is also the most successful at

classifying multiple water chemistry/clarity variables.

However, using this single classification was on average

20% less successful in classifying other variables and as

much as 50% less successful in classifying alkalinity.

When compared to regionalizations, the Secchi HGM

CART was on average 16% more successful in classifying

chemistry/clarity variables and 29% better when alkalinity

was excluded from the analysis. Thus, our results demon-

strate that no single classification scheme can maximize

success for all lake water chemistry/clarity variables

because each classification depends on a different suite of

local and regional HGM variables. Our results show that

when limited to using a single classification model, overall

classification success can be improved over using solely a

regionalization scheme by choosing an integrated measure

of ecosystem integrity, such as water clarity. Comparisons

such as ours should help guide the application of different

approaches to lake classification and allow for management

agencies to make choices between logistical practicality

and ecological robustness.

Applications to Ecosystem Management

A classification system is often used to reduce the number

of different ecosystem types that governmental agencies

are charged with monitoring and managing. To enhance the

usefulness of any classification, we suggest that the crea-

tion of the classification follow a process that allows for the

consideration of alternative classification models, specifi-

cally to include multiple measures of a characteristic over

multiple spatial scales. Our use of detailed tree-based

output allows for the evaluation of alternative splitting

decisions which can then be used to allow for an assess-

ment of practicality and/or cost to enter into the classifi-

cation process. For example, our results show that

susceptibility of lakes to acidification may be adequately

captured at larger spatial scales, as lakes within regions had

similar alkalinity, and thus is a cost-effective classification
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as these data are easy to collect for all lakes. On the other

hand, management of nitrogen inputs to lakes should

benefit from a more complex classification combining

regionalizations and local HGM features, including lake

maximum or mean depth. We recognize that information

about lake depth is not available for all lakes, nor is it a

variable that can be obtained from remote sensing at this

time. However, this HGM feature does not change rapidly

and, therefore, funds invested to collect lake morphometry

data should be an excellent investment because of the

data’s longevity and importance for a large number of lake

processes. For example, many Michigan lakes have

bathymetric maps that date from 1929 through 1980. Our

classification can be used to classify these lakes without an

additional visit since lake morphometry features are stable

over a relatively long time period in relation to water

chemistry/clarity. In addition, maximum depth is less

costly to measure than mean depth, and hopefully the use

of new methods in remote sensing, such as radar, may aid

in the collection of lake depth information for large num-

bers of lakes in the near future.

Our approach to lake classification combines the

strengths of a regionalization approach and a local HGM-

based approach with analytical advances in multivariate

statistics. We recommend: (1) using HGM features mea-

sured over multiple spatial scales, (2) a tree-based approach

to classification, with analysis of detailed splitting deci-

sions, and (3) evaluating the cost of using a single classi-

fication for grouping disparate response variables. Our

approach can fulfill the needs of management agencies for

an ecologically-based classification system which will

allow for robust trend detection through time by reducing

variation in natural HGM features within each class,

allowing for the proper focus to be placed on the identified

stressors such as land use/change, climate change or

change in public access and use of the resource. The

classification of other ecosystem types such as streams and

wetlands should also benefit from taking a multi-scale

HGM-based approach by building upon foundational

relationships between ecosystem function and hydrogeo-

morphic setting which can be measured over different

spatial scales.
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