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Abstract

We present a novel ecosystem-specific framework for developing nutrient criteria from biological thresholds and
predictive modeling (BTPM) and an application of this framework to lakes in Michigan, U.S. The four main
components for the BTPM framework are: (1) to predict each ecosystem’s ‘expected nutrient concentration’ in the
absence of human effects using a predictive model, (2) to identify important biological thresholds along a nutrient
gradient (i.e., biological [BIO] benchmarks), (3) to determine each ecosystem’s current nutrient concentration, and (4) to
use the above information to derive a nutrient criterion for each ecosystem using the BTPM algorithm. The BTPM
framework is extremely flexible in that it can be applied to any aquatic ecosystem type or nutrient and the four
components can be implemented in a variety of ways. Our BTPM framework has two additional features: it recognizes
that prior to human disturbance, ecosystems varied in their natural nutrient concentrations, and it incorporates risk into
the decision-making process. In the simplest scheme, a nutrient criterion is set at a BIO benchmark greater than the
expected nutrient concentration. However, to protect ecosystems more conservatively, a criterion is set at current lake
nutrient concentrations if current is less than the BIO benchmark. In our application of the BTPM framework, we
developed total phosphorus (TP) criteria for a diverse set of 374 lakes in MI. The expected lake TP concentrations in the
absence of human effects ranged from 3 mg L21 to 24 mg L21, suggesting that a single criterion approach would not be
appropriate. We found two predominant benchmarks in the biological data along the TP gradient, one for zooplankton
metrics at 8 mg L21, and one for phytoplankton metrics at 18 mg L21. We present the sequence of analyses and
decisions that could be used to apply this approach in a management context using Michigan lakes as an example.

Although the primary role that phosphorus plays in lake
eutrophication has been known for decades, setting
management goals for phosphorus has been challenging.
In the U.S., the measurement of nutrient levels in water
bodies serves as the main basis for assessing progress
towards meeting the goals of the Clean Water Act to
protect the designated uses of water bodies (USEPA 2000;
Reckhow et al. 2005). In the European Union, the Water
Framework Directive adopted in 2000 mandates that ‘good
ecological status’ be achieved in all waterbodies in
European Union countries by 2015, but provides little
guidance on methods for achieving this goal (European
Union 2000; Søndergaard et al. 2005). In the U.S., states
and tribes consistently identify excessive levels of nutrients
as a major cause of why as much as half of the surface
waters surveyed in the country do not meet water quality
standards (USEPA 2000). The U.S. Environmental Pro-
tection Agency has mandated that states either adopt the
ambient nutrient criteria developed by that agency, or
develop scientifically defensible numerical criteria for
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nutrients (phosphorus and nitrogen) that will protect the
designated uses of water bodies (USEPA 2000). In fact,
without nutrient criteria, a water body typically must reach
nuisance algal conditions before an action is taken, which is
often subjective at best. Despite this need, few states have
established numerical nutrient criteria on a state-wide scale,
and as of this writing, less than ten states have adopted
numeric nutrient criteria for the majority of their lakes (C.
Bauer, pers. comm.).

Several approaches for setting nutrient criteria have been
proposed, and an important assumption in each method is
that a given nutrient criterion acts as an indicator of
whether designated uses are being met (Reckhow et al.
2005). If we consider the ‘aquatic life’ designated use as
measured by biological integrity, then the different
approaches to setting nutrient criteria can be classified as
either implicit or explicit in this regard. In an implicit
approach, biological integrity is assumed to be protected at
minimal human disturbance levels defined by some human
disturbance gradient and associated nutrient value, but the
biological integrity is not measured. In an explicit
approach, changes in specific biological responses are used
as a surrogate for the designated use more explicitly by
examining how they change along a nutrient gradient either
through analytical approaches, expert judgment, or some
combination of the two (Stevenson et al. 2004; Reckhow et
al. 2005). Surprisingly, biological response gradients have
only sometimes been used for setting nutrient criteria (King
and Richardson 2003; Heiskary and Wilson 2005; Reckhow
et al. 2005). This situation may occur because many of the
relationships between lake biology and phosphorus are
linear which provide little support for establishing a nutri-
ent criterion. However, although not always explicitly
quantified, there are many examples of nonlinear relation-
ships between biological responses and nutrients in lakes
(Watson et al. 1997; Jeppesen et al. 2000; Downing et al.
2001; Vadeboncoeur et al. 2003) and in wetlands (Steven-
son et al. 2002; King and Richardson 2003; Lougheed et al.
2007). In cases where thresholds can be clearly quantified,
a nutrient criterion can be justifiably set at or below that
threshold value (Stevenson et al. 2004).

Although there has been a wealth of research on
eutrophication, its causes, and its associated effects on
aquatic foodweb dynamics (Smith 1998), there are still few
integrated approaches available for setting nutrient criteria
in aquatic ecosystems that incorporate these insights into
a framework that can be easily applied at the state (or
national) level by agency managers and biologists. Such
a framework must obviously strike a balance between
model and analytical complexity and implementation
practicality in a management context. Management agen-
cies are charged with managing often thousands of aquatic
ecosystems within social, political, and logistical con-
straints such as limited funding, limited data availability
and limited personnel for implementation. Our goals were
to develop a framework that can work within such
constraints by integrating biological thresholds and pre-
dictive modeling (BTPM) of nutrient expected conditions,
and to present a practical implementation of the framework
that can be readily adopted by management agencies. In

our approach, the biological thresholds can be viewed as an
indicator of whether designated uses are being met, which
are integrated into the overall criteria development process,
and which in different applications can take different form.

Overview of the BTPM framework—Our BTPM frame-
work integrates nutrient modeling to predict ecosystem-
specific expected condition (using any model form),
biological thresholds (i.e., nonlinear biological responses
along a nutrient gradient), and current nutrient concentra-
tions into an algorithm to derive ecosystem-specific
nutrient criteria. Our framework has four main compo-
nents (Fig. 1). The framework is flexible in that it can be
applied to any aquatic ecosystem type or nutrient, it can
incorporate any approach to predict an individual ecosys-
tem’s expected condition or to identify thresholds, and
these data can be integrated into an algorithm to determine
nutrient criteria in a variety of different ways. Our
framework has two additional important features. It
recognizes that prior to human disturbance, water bodies
differed in their natural nutrient concentration as a result of
their hydrogeomorphic (HGM) features, which should be
reflected in the establishment of nutrient criteria, and it
incorporates risk into the decision-making process to
choose biological thresholds. Application of this frame-
work requires data on as many ecosystems as possible (to
obtain a wide range in HGM features). Ideally, these
ecosystems would be sampled weekly or monthly during an
important index period (such as summer) and over the
course of multiple years. However, in Michigan and many
other states, there are few lakes with monitoring data from
multiple time periods within or across summers. Our
framework can accommodate data from single time periods
or multiple time periods. Similarly, if lacking the necessary
data on relevant biological responses of interest, informa-

Fig. 1. The four main components of an ecosystem-specific
framework for developing nutrient criteria.
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tion from the literature can be used, preferably in
combination with sampled data. Below, we present an
application of our BTPM framework.

Application of the BTPM framework to Michigan lakes—
We applied our BTPM framework to a diverse set of 374
lakes in Michigan, in consultation with the Michigan
Department of Environmental Quality (MI-DEQ), the state
management agency responsible for setting nutrients stan-
dards for Michigan’s aquatic resources. We present results
for lake total phosphorus (TP) criteria. A key advantage of
our Michigan lake application is that these individual lake
criteria can be derived efficiently given standard and widely
available limnological monitoring data sets including vari-
ables such as: lake morphometry, lake chemistry (total
nutrients), water color, and geographic information system
(GIS) data that are becoming widely available at the state
(and national) level such as geology, ecoregion, and land use/
cover (LULC). Next we describe the main steps that we used
in this application (Fig. 2).

There were two steps to predict the lake-specific expected
TP (also called lake reference condition). First, we built
a hydrogeomorphic-land use model (HGM-LU) that
models lake TP as a function of commonly used predictors
such as HGM features and human LULC (Norvell et al.
1979; Håkanson 1996). The predictive model for this step
can take a variety of different forms; we used a multiple
regression approach of cross-sectional data on several
hundreds of lakes. Because we did not have phosphorus
loading estimates for these lakes, we used variables that are
related to phosphorus loading. In the second step, we used
the HGM-LU model to predict expected lake TP (EXP0) in
the absence of human LULC effects through back-
calculation of each lake by setting the human LULC
coefficients to zero (Dodds and Oakes 2004; Baker et al.
2005). EXP0 is the expected condition for each lake defined
as the least disturbed condition given the state of today’s
landscape (Stoddard et al. 2006). We then calculated
expected condition with allowance (EXPA) by adding an
‘allowance’ to EXP0. The allowance can serve any number
of different purposes such as representing model un-
certainty in the estimation of EXP0, or some low or
minimal level of allowable human disturbance to the lake
(Fig. 2). The allowance should be chosen based on the
goals of the nutrient criteria, the definition of expected
condition, ecological justification, or some estimate of
prediction uncertainty, all of which are likely to vary from
state to state. We chose to represent model uncertainty.

To identify biological thresholds, we analyzed lake
biological responses (such as zooplankton, phytoplankton
and macrophyte metrics) along a TP gradient to identify
critical thresholds where major changes in lake biology
occur (King and Richardson 2003; Lougheed et al. 2007),
which we define as BIO benchmarks (Fig. 2). These
benchmarks were used to define BIO zones, which are
defined as the TP values between two BIO benchmarks (as
well as between the lowest benchmark and the lowest TP
concentration, and the highest benchmark and the highest
TP concentration in the dataset). We determined current
TP by using existing sampling data from state databases.

The fourth component was to integrate each lake’s
expected TP, current TP, and the BIO benchmarks to
derive a nutrient criterion for each lake using the BTPM
algorithm (Fig. 2). The BTPM algorithm is made up of
four rules for setting individual lake criteria (Fig. 2): (1) If
modeled expected condition (EXPA) is greater than current
TP, then set criterion at current TP. This rule is particularly
important because it ensures that there is no further
degradation in lakes that have lower TP than is predicted
from the model. (2) If EXPA is less than current TP, but is
in the same BIO zone as current TP (but not the highest
BIO zone), then set criterion at current TP. (3) If EXPA is
less than current TP, but in the highest TP BIO zone, then
set criterion at EXPA. (4) If EXPA is in a lower TP BIO
zone than current TP, then set criterion at the higher TP
BIO benchmark for the zone EXPA is in. The integration of
the BIO zones with the EXPA recognizes that model
predictions have some uncertainty associated with them.

Our application of the BTPM framework to Michigan
lakes is based on six key assumptions that we evaluated and
developed during our criteria development process in
a work-group setting with researchers, managers, and
biologists. First, we assumed that phosphorus is the main
‘stressor’ to lakes. Second, we assumed that there is
important natural variation in TP among lakes because
of HGM features such as catchment and lake morphom-
etry, geology, and regional scale factors such as climate,
which can be modeled. Third, we assumed that benchmarks
should be established to sustain desired levels of one or
more biological attributes of lakes which are related to
a lake’s designated use. Fourth, we assumed that important
lake biological responses should include integrative mea-
sures of lake biology from both the pelagic and littoral
zones and lake water clarity, which is related to lake
biology through phytoplankton biomass. Fifth, we as-
sumed that human disturbance of a lake can be reasonably
approximated as the proportion of human LULC in the
lake catchment. Although LULC does not represent all of
the possible human effects on lakes, it is commonly used as
an ‘indicator’ of human effects and is the most widely
available dataset for this purpose. Finally, because lakes in
the U.S. are managed at the state level, we chose the state
as an appropriate spatial scale to build models.

Methods

Databases—Water chemistry data: For water chemistry,
we used data for 374 natural lakes ($0.20 km2) with public
access sampled by the Michigan Department of Environ-
mental Quality (MI-DEQ) from 1975–1982 to match the
time period for our LULC data (1978–1985). We obtained
the data from the Storage and Retrieval database
(STORET). Natural lakes are those with or without a water
control structure on them, but that had an open-water
basin prior to human modification. Data were collected
from each lake on a single date during the summer
stratified season (July–September; Table 1) for TP, alka-
linity, and true water color (Table 1).

HGM-LULC data: We created a GIS-based lake HGM-
LULC database for all 374 lakes (Table 2). Lake mor-
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Fig. 2. The four main components in our application of the BTPM framework for Michigan lakes. LULC is land use/cover, morph
is morphometry, and geol is geology. For the fourth component, the letters represent all of the eight possible relationships among lake
expected condition (EXPA), current condition (CUR), and the two biological response (BIO) benchmarks for the 374 Michigan lakes. The
‘% of lakes’ is the number of lakes in the Michigan lake dataset that fall within each of the eight possible relationships for the
BTPM algorithm.
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phometry was measured as: mean depth, maximum depth,
shoreline development factor (the ratio of shoreline
perimeter divided by the circumference of a circle of the
same area), and lake basin slope [(surface area)1/2/mean
depth] (Table 2). Catchment areas were delineated as
cumulative catchments that include all upstream stream
and lake catchments. Stream length included the length of
all upstream streams directly connected to lakes. Bedrock
geology data was grouped into five categories: carbonate,
clastic, hard rock, salt, and iron (Geologic Survey Division,
MI-DEQ). Surficial geology data was grouped into five
categories: dune sand, glacial till, lacustrine, moraine, and
outwash (Michigan Natural Features Inventory and
Michigan Department of Natural Resources [MDNR]).
We obtained LULC data from the Michigan Resource
Information Service (MDNR), where urban, agriculture,
forest, upland field, and open water classes were de-
termined from aerial photographs taken between 1978 and
1985 at a resolution of 0.025 km2.

We quantified the proportions of LULC, bedrock
geology, and surficial geology in the 500-m buffer around
each lake, which we use as an indicator of the lake’s
catchment. Although these 500-m buffers are not true
catchments, analyses on these Michigan lakes (Soranno,
unpubl. data) have shown that LULC from the 500-m
buffer is highly correlated (p , 0.001) to LULC of the
lake’s catchment (% urban, r 5 0.63,% agriculture, r 5
0.83), and these data are readily available for all lakes in
a region with a GIS coverage.

Biological data: We combined biological response
datasets from six recent studies of lakes sampled from
1998–2004 (Table 3). To maximize sample sizes, we
combined data across studies when lakes were sampled
using the same methods. Data were based on single visits to
a lake with the exception of the study by Bremigan et al.
(2005), from which we had data for six lakes and two years
of contrasting TP levels. The biological responses examined
included: phytoplankton biomass and clarity metrics,
phytoplankton community and toxin metrics, micro- and
macrozooplankton community metrics, and macrophyte
cover metrics. (For a complete list of metrics, see Tables 6
and 7 and see citations in Table 3 for further details on
methods and variables.)

Step 1: Predict lake-specific expected TP—We built the
HGM-LU model that predicts lake epilimnetic TP from
HGM variables, limnological variables that influence TP
(water color and alkalinity; Chow-Fraser and Duthie 1983;
Håkanson et al. 2005), ecoregion, and LULC (Tables 1 and
2).

To build the model, we used stepwise multiple regression
(both forward and backward) and included all predictor
variables that were significantly univariately correlated to
TP (correlation coefficient, p # 0.10). We transformed
variables as needed to meet assumptions of normality and
homogeneity of variances. We chose the best model based
on the Akaike information criterion (AIC) because it takes
into account the number of parameters in the model and
penalizes models with more parameters; models with AIC
values of 10 units lower than other models were assumed to
have the most support (Burnham and Anderson 2002). We
took several additional steps to minimize the potential
multicollinearity problems associated with using multiple
linear regression. First, we conducted both forward and
backward stepwise regression and used a conservative
significance level (p # 0.05) to retain predictor variables in
the models. Second, we quantified the level of multi-

Table 1. Median, minimum, and maximum values for the
lake chemistry variables. n 5 374 lakes for all variables except
alkalinity (n 5 372).

Lake chemistry Median Minimum Maximum

Total phosphorus (mg L21) 13.0 1.0 155
Alkalinity (mg L21 CaCO3) 105 1.0 225
Water color (Pt Co) 9.0 1.0 99

Table 2. Median, minimum, and maximum values for the
hydrogeomorphic (HGM) and land use/cover (LULC) features. n
5 374 for all variables. Stream length is the length of upstream
streams connected to the given lake. Precipitation is the 30-yr
annual average. Drainage area is the catchment area plus the lake
area. Shoreline development factor, all ratios, and lake basin slope
are unitless. Land use/cover percentages, geology percentages and
precipitation were calculated on the 500-m buffer surrounding
each lake.

HGM features and LULC Median Minimum Maximum

Lake and catchment morphometry
Lake area (km2) 0.61 0.20 75.8
Mean depth (m) 4.5 0.8 42.5
Maximum depth (m) 12.8 3.0 86.9
Shoreline development factor 1.8 1.0 6.3
Lake basin slope 194 46.4 1,825
Catchment area (km2) 7.1 0.21 1,948
Catchment area : lake area 10.0 0.7 2,655
Drainage area (km2) 8.4 0.44 1,949
Drainage area : lake area 11.0 1.7 2,656
Stream length (km) 1.4 0 2,805
Climate
Precipitation (mm) 835 706 1,008

Surficial geology
% dune 0 0 53
% outwash 30 0 100
% moraine 0 0 100
% exposed bedrock 0 0 100
% peat and muck 0 0 71
% lacustrine 0 0 100
% glacial till 0 0 100

Bedrock geology
% carbonate 0 0 100
% clastic 100 0 100
% hard rock 0 0 100
% salt 0 0 100
% iron 0 0 100

LULC
% agriculture 6 0 81
% urban 13 0 87
% forest 50 1 98
% upland vegetation 6 0 54
% wetland 6 0 49
% open water 1 0 17
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collinearity in the predictor variables in the final model by
calculating variance inflation factors and using a cutoff of
30 (Hair et al. 1995), above which predictor variables are
assumed to suffer from high multicollinearity. For the best
model, we calculated partial R2’s for each predictor
variable to assess the worth of collecting each piece of
information for practical relevance and application of the
model.

For the best HGM-LU model, we also tested whether
including an ecoregion framework explained additional
variation in lake TP. Because ecoregions are also correlated
to a variety of HGM and LULC variables (Wickham et al.
2005), we examined the residuals of the best HGM-LU
model and performed an ANOVA with ecoregion as the
predictor. We used Ecological Drainage Units (Higgins et
al. 2005) as our ecoregion because it has been shown to
partition variation in TP for Michigan lakes (Cheruvelil et
al. in press).

Using the best HGM-LU model, we then calculated
EXP0 by setting the model coefficients for agriculture and
urban LULC to zero. We calculated EXPA by adding the
allowance to EXP0, which we estimated by calculating the
upper 75th confidence interval from the HGM-LU model
to account for model uncertainty.

Step 2: Identify biological thresholds along TP gradient—
We examined BIO response variables that are commonly
sampled by agencies, are related to attributes that the
public value (e.g., algal biomass influences water clarity)
and are good indicators of ecological integrity in lakes (e.g.,
zooplankton are important component of lake pelagic
foodwebs). We quantified the relationship between each
BIO response and TP in two ways; we used linear
regression on transformed variables (where necessary) to
quantify linear relationships and regression tree analysis
(RTA) on untransformed variables to quantify nonlinear
relationships using Systat 11.0 (Systat Software, Inc.). RTA
is a recursive data partitioning algorithm that initially splits
the response variable into two subsets based on the value of
the predictor variable (TP) that maximizes the reduction in
total residual sum of squares from the parent group to the

two daughter groups (Breiman et al. 1984). Each node is
then split using the same algorithm. At each split, we
examined the ‘proportional reduction in error’ (PRE),
which is a goodness of fit statistic and similar to an r2 value.
We considered that there was scientifically supportable
evidence for a shift in the BIO response if the PRE was
$0.30 (moderate-strong) and if the PRE was greater than
the r2 from the linear model.

For these moderate-strong relationships, we quantified
uncertainty by defining the ‘TP benchmark risk’ using
a bootstrap simulation (Qian et al. 2003). We resampled the
data (with replacement) 1,000 times and calculated the
single strongest threshold for each simulated dataset. The
‘TP benchmark risk’ was defined as the cumulative
probability of a threshold based on the relative frequency
of each threshold in the distribution (King and Richardson
2003), in other words, the proportion of bootstrapped
thresholds that are equal to or lower than a given TP
threshold. The bootstrapped RTA was conducted in the R
statistical environment using the rpart and bootstrap
libraries (R Development Core Team, 2007). We then
plotted cumulative probability curves for each metric,
which described the cumulative risk of a change in the
response variable (BIO) with changing TP values (Qian et
al. 2003).

To inform our decision of choosing the BIO bench-
marks, we calculated BIO response factors by first
calculating the median value of each BIO response variable
above and below a BIO threshold, and then dividing the
larger median by the smaller median. We quantified the
BIO response factor at three risk levels: 1%, 10%, and 50%.
We assumed that there was an ecologically important
change in the BIO response when the medians above and
below a threshold differed by a factor of two (although any
factor can be chosen). Because the BIO response can either
increase or decrease with increasing TP dependent on the
relationship (e.g., Secchi depth decreases and algal biomass
increases with increasing TP), we calculate the factor by
dividing the larger median by the smaller regardless of
whether the BIO response increased or decreased. We use
these BIO response factors to help identify the point at

Table 3. The biological datasets used for the biological response threshold analysis. n refers to the number of lakes in each dataset,
years refers to the year that the lakes were sampled in, and TP range is the minimum and maximum TP value in the dataset.

Biological datasets Response variables n Years TP range (mg L21)

(a) Martin and Soranno 2006 Chl a 64 2003 2.6–34.0
Secchi depth 63

(b) Cheruvelil and Soranno. In press. Macrophyte cover 53 2000–2001
2002–2003

4.4–65.6
4.8–64.0(c) Knoll 2004 Chl a 64

Secchi depth 64
Extinction coefficient 64
Phytoplankton 56
Microzooplankton 46

(d) Scheele unpubl. data Macrozooplankton 15 2002–2003 5.3–19.3
(e) Bremigan et al. 2005 Chl a 13 1998–1999 11.8–32.3

Secchi depth 13
Macrozooplankton 13

(f) Jubar 2004 Secchi depth 15 2004 10.0–24.6
Macrozooplankton 15
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which an important change in the BIO response has
occurred, which we define as a BIO benchmark and is one
of the inputs into the BTPM algorithm.

Step 3: Determine current TP in each lake—We used the
existing sampling data from the 374 Michigan lakes that
were sampled during one time period in the summer (see
Databases for details).

Step 4: Derive lake-specific nutrient criteria using the
BTPM algorithm—We integrated the results from step 1 to
step 3 into the BTPM algorithm to develop lake-specific
nutrient criteria (see Fig. 2 for the graphical representation
of this algorithm in step 4). The inputs to the algorithm are
the measured TP concentration for each lake (current), the
expected lake TP concentration with allowance (EXPA),
and the BIO benchmarks. We define ‘BIO zones’ as TP
values between any two adjacent BIO benchmarks, and
between a BIO benchmark and either the maximum or
minimum TP value in the dataset. The BTPM algorithm is
made up of the four rules stated earlier that defines all the
possible relationships among these variables (see Applica-
tion of the BTPM framework to Michigan lakes).

Results

Step 1: Predict lake-specific expected TP—The lakes
used to build the HGM-LU model ranged in TP from
1 mg L21 to 155 mg L21, with a relatively low median of
13 mg L21 (Table 1). The lakes also ranged widely in
alkalinity and water color (Table 1). Of the many HGM
variables univariately related to lake TP (Table 4), the
strongest included common predictors of TP such as lake
depth, LULC, catchment morphometry, precipitation, and
water color.

The best HGM-LU model included variables known to
be correlated with P loading to lakes (Table 5, Fig. 3).
Although significant, outwash geology only adds a small
amount to the overall R2, therefore, if a management
agency were to use this model, they could choose whether
to retain this variable based on cost and effort of including
it. To assess the importance of ecoregions for predicting
reference TP, we performed an ANOVA with the residuals
from the best model as the response and Ecological
Drainage Units as the predictor. Because ecoregion was
not significant (p . 0.05), it was not incorporated into the
final model.

Using the best HGM-LU model, we estimated EXP0 and
EXPA for each lake. The upper TP range for current lake
condition exceeded the upper range for both EXP0 and
EXPA as expected (Fig. 4). In the absence of human
disturbance (EXP0), TP in our study lakes ranged from
3 mg L21 to 24 mg L21, demonstrating the wide range in TP
expected condition. When incorporating an allowance
(EXPA), TP expected condition ranged from 4 mg L21 to
33 mg L21.

Step 2: Identify biological thresholds along TP gradient—
There were 36 BIO response relationships with TP as the
predictor. Fourteen of them had a PRE $0.20, and seven

of those had a PRE $0.30 (moderate–strong) and a higher
fit than the r2 from linear regression models (Tables 6 and
7). We grouped these BIO responses into two ecological
classes: 1) phytoplankton and water clarity and 2)
zooplankton. Figure 5 shows the raw data for each
moderate-strong BIO response relationship and the loca-
tion of the RTA threshold(s). This figure also depicts the
cumulative frequency plot of the 1,000 bootstrapped
thresholds. The interquartile ranges of the bootstrapped
thresholds ranged from 5 mg L21 to 37 mg L21 TP for
phytoplankton and clarity metrics, and from 6 mg L21 to
13 mg L21 TP for zooplankton metrics (Table 7). Because
the thresholds calculated using RTA were high relative to
the range of bootstrapped thresholds (Fig. 5 and Table 7),
we suggest caution in using RTA values for benchmark

Table 4. Univariate correlations between hydrogeomorphic
(HGM), land use/cover (LULC), and water chemistry predictor
variables and TP. Units and descriptions are the same as for
Table 2. Correlations were performed on transformed variables
when necessary. Correlation coefficients that are significant at
alpha #0.10 are in bold and were included in the predictive
modeling step. n 5 374 for all variables, except for alkalinity (n
5 372).

Predictor variables r p

Lake and catchment morphometry
Lake area (km2) 20.050 0.336
Mean depth (m) 20.292 ,0.001
Maximum depth (m) 20.301 ,0.001
Shoreline development factor 0.044 0.394
Lake basin slope 0.199 ,0.001
Catchment area (km2) 0.107 0.038
Catchment area : lake area 0.160 0.002
Drainage area (km2) 0.096 0.063
Drainage area : lake area 0.093 0.073
Stream length (m) 0.101 0.051
Climate
Precipitation (mm) 0.218 ,0.001

Surficial geology
% dune 0.095 0.066
% outwash 20.097 0.062
% moraine 0.107 0.039
% exposed bedrock 20.032 0.531
% peat and muck 0.053 0.310
% lacustrine 20.062 0.233
% glacial till 0.052 0.313

Bedrock geology
% carbonate 20.104 0.044
% clastic 0.171 0.001
% hard rock 20.077 0.137
% salt 0.013 0.799
% iron 20.083 0.109

LULC
% agriculture 0.287 ,0.001
% urban 0.148 0.004
% forest 20.318 ,0.001
% upland vegetation 0.093 0.072
% wetland 0.007 0.894
% open water 20.058 0.265

Water chemistry
Alkalinity 0.084 0.131
Water color 0.410 ,0.001

Ecosystem-specific nutrient criteria 779



identification without consideration of the uncertainty or
risk associated with those values. We defined risk as the
proportion of bootstrapped thresholds that were equal to
or lower than a given TP threshold, which we incorporated
into the next step that identifies the BIO benchmarks.

To choose the BIO benchmarks for the BTPM algorithm,
we used our estimates of risk in the seven moderately-strong
BIO threshold relationships at three levels (1%, 10%, and
50%) and the BIO response factors (Table 8). For phyto-
plankton and water clarity metrics, medians for both
chlorophyll a (Chl a) and phytoplankton biomass differed
by more than a factor of two (i.e., biologically important) at
the 1% risk level, which was exacerbated at higher risk
values. For extinction coefficient, the medians differed by
a factor of two at the 10% risk level. In contrast, medians for
Secchi depth never differed by a factor of two. This suggests
that although the thresholds derived for Secchi depth were
statistically significant, they were not biologically meaning-
ful. In addition, the PRE for Secchi depth was the lowest of
all of the moderate-strong relationships (0.32, Table 7), and
in fact, was very similar to the r2 for the linear regression

Table 5. Multiple regression results for the best hydrogeo-
morphic-land use model (HGM-LU) for predicting lake TP (R2 5
20.39, p , 0.001, F 5, 368 5 46.6). SE refers to the parameter
estimate standard errors and partial R2’s provide the contribution
of each variable to the overall model.

Predictor variables
Parameter
estimate SE Partial R2

Constant 1.80 0.138
Mean depth 20.24 0.050 0.05
Surficial geology

(% outwash) 20.18 0.065 0.02
Water color 0.36 0.037 0.18
% agriculture 1.10 0.146 0.13
% urban 1.24 0.193 0.10

Fig. 3. Predicted versus observed (current) TP for the best
hydrogeomorphic-land use model. See Table 5 for model de-
scription.

Fig. 4. Frequency histograms of lake TP for (A) current TP,
(B) the expected TP with allowance (EXPA), and (C) the ex-
pected TP without allowance (EXP0). The x-axis ends at
75 mg L21, thus two lakes are not shown at 118 mg L21 and
155 mg L21 for (A).
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(0.29). Because the nonlinear relationship was not well
supported by the data, thresholds for Secchi depth did not
contribute towards setting criteria in Michigan lakes. For the
zooplankton metrics, the difference in the medians above
and below the benchmarks was biologically important for
proportional biomass of Daphnia and zooplankton biomass
at the 1% risk level. Based on these analyses, we identified
two BIO benchmarks, one associated with phytoplankton
metrics, and the other associated with zooplankton metrics.

BIO benchmarks must be chosen with care to minimize
the risk of losing biological integrity in an ecosystem by
setting a benchmark either too high or too low. Although
choosing the lowest possible BIO benchmark may seem
protective and conservative, this may not actually be the
case once the benchmarks are incorporated into the BTPM
framework. For example, consider what happens in a two-
benchmark algorithm with 20 mg L21 TP as the upper BIO
benchmark and either 10 mg L21 or 12 mg L21 TP as the

lower benchmark. If we use 12 mg L21 as the lower BIO
benchmark, lakes with EXPA of 11 mg L21 will be managed
to maintain a benchmark of 12 mg L21. Although choosing
10 mg L21 as the lower BIO benchmark seems as if it would
be more protective, doing so means that lakes with EXPA

of 11 mg L21 will be managed for the upper BIO
benchmark of 20 mg L21. As a result, choosing excessively
low or high benchmarks may not be prudent. Therefore, we
chose intermediate benchmark values, using risk levels
from either 1% or 10% (depending on the BIO response
factor) for thresholds that were associated with an
important ecological change. For phytoplankton metrics,
we chose 18 mg L21 (range from 16.0 mg L21 to
20.9 mg L21); for zooplankton metrics, we chose 8 mg L21

(range from 7.5 to mg L21 9.1 mg L21).

Step 3: Determine current TP in each lake—We show the
histogram of the current TP data in Fig. 4.

Table 6. Results of the regression tree analysis (RTA) of the relationship between TP and the untransformed biological responses
(BIO) where the fit statistic, the proportional reduction in variance (RTA-PRE), is ,0.30; and r2 and p values for the linear regression
between TP and the BIO responses (transformed where necessary). For the dataset description, letter designation, and citation, see
Table 3. n is the number of lakes in each analysis. For relationships that had more than one threshold, the values in bold are the
thresholds that occur first, with the greatest reduction in deviance. Toxin is microcystin toxin.

Dataset Biological responses
TP range
(mg L21) n

TP threshold(s)
(mg L21) RTA-PRE

Linear
regression

r2 p

c Phytoplankton community and toxins
Microcystis biomass (mg L21) 4.8–64.0 56 34.6 0.11 0.06 0.07
Toxin concentration per Chl a (mg mg21) 4.8–64.0 64 8.1, 9.8 0.21 0.00 0.91
Environmental concentration of toxin (mg L21) 4.8–64.0 64 34.6 0.25 0.17 0.001
Toxin per microcystis biomass (mg mg21) 4.8–64.0 56 34.6 0.17 0.06 0.08
Cyanobacteria biomass (mg L21) 4.8–21.0 51 — 0 0.03 0.26
Microzooplankton
Ciliate biomass (mg L21) 4.8–64.0 54 — 0 0.04 0.15
Rotifer biomass (mg L21) 4.8–44.0 61 20.7 0.16 0.02 0.23
Rotifer species number (#) 4.8–21.0 57 — 0 0.02 0.26

d, e, f Macrozooplankton community
Bosmina spp. mean length (mm) 5.3–25.6 31 19.3 0.07 0.01 0.68
Ceriodaphnia spp. mean length (mm) 5.3–18.2 20 12.3 0.23 0.18 0.06
Daphnia spp. mean length (mm) 5.3–32.3 42 11.2, 12.7 0.25 0.02 0.44

d, e Copepod biomass (mg L21) 5.3–32.3 28 11, 13.4 0.27 0.27 0.004
Daphnia pulicaria total biomass (mg L21) 5.3–25.6 17 11.2 0.16 0.02 0.63
Bosmina spp. total biomass (mg L21) 5.3–25.6 18 14.0 0.25 0.11 0.18

b Macrophyte cover (%, unless otherwise indicated)
Macrophyte edge (perimeter : area, m21) 4.4–65.6 53 8.3, 22.7, 28.4 0.27 0.00 0.90
Lake cover 4.4–65.6 53 8.3, 22.7, 28.4 0.18 0.00 0.69
Lake dense cover 4.4–65.6 53 8.4, 18.7 0.14 0.06 0.74
Lake emergent cover 4.4–65.6 53 19.9 0.08 0.03 0.23
Lake floating cover 4.4–65.6 53 — 0 0.01 0.50
Lake submersed cover 4.4–65.6 53 8.3, 22.7 0.14 0.01 0.44
Lake EWM cover 4.4–65.6 53 12.1 0.10 0.07 0.05
Lake dense EWM1 cover 4.4–65.6 53 28.4 0.14 0.07 0.05
Littoral cover 4.4–65.6 53 19.9 0.10 0.05 0.10
Littoral dense cover 4.4–65.6 53 8.4, 10.8 0.13 0.00 0.97
Littoral emergent cover 4.4–65.6 53 10.8 0.06 0.03 0.19
Littoral floating cover 4.4–65.6 53 — 0 0.00 0.71
Littoral submersed cover 4.4–65.6 53 19.9 0.11 0.07 0.06
Littoral EWM cover 4.4–65.6 53 12.2 0.08 0.05 0.11
Littoral dense EWM cover 4.4–65.6 53 — 0 0.05 0.11

1 EWM is the non-native Eurasian watermilfoil (Myriophyllum spicatum L.)
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Step 4: Derive lake-specific nutrient criteria using the
BTPM algorithm—We entered the following into the BTPM
algorithm: two BIO benchmarks of 8 mg L21 and
18 mg L21, expected lake TP with allowance for each lake
(EXPA), and current lake TP (CUR) for each lake. Figure 2
shows the graphical representation of this algorithm
showing all possible relationships (A–H) among the inputs.
For the 374 Michigan lakes, we calculated how many lakes
fell within each category (Fig. 2). For the 23% of lakes for
which there was a BIO benchmark between the CUR and
EXPA, criteria were set at those benchmarks (B and D). For
the 26% of lakes that did not exceed a BIO benchmark,
criteria were set at CUR (A and C). The only situation in
which criteria were set at EXPA was when both CUR and
EXPA were greater than the largest BIO benchmark and
CUR was greater than EXPA (E), which only occurred in 3%
of lakes in our database. For 48% of the lakes, CUR TP was
less than EXPA TP (F–H). However, recall that we added an
‘allowance’ to each lake’s EXP0, including those lakes with
relatively low human disturbance, and consequently low TP.
Therefore, EXPA is likely to be higher than CUR for many
minimally disturbed lakes that we have in our dataset. To
accommodate this situation and to prevent degradation, one
of the rules in the algorithm states that under these
conditions, criteria are set at CUR rather than EXPA (F–H).

Discussion

We have presented a framework to develop ecosystem-
specific nutrient criteria in a scientifically-defensible way
that is flexible enough to incorporate many different
context-specific situations that might occur in different
political jurisdictions or geographic regions. We have also
presented an application of our framework to set TP
criteria in a diverse set of Michigan lakes. We will first
discuss implications of the BTBM framework and general
topics that must be addressed in any application of this
framework using our application to Michigan lakes as
a concrete example, and then we discuss some features and

issues that arose from our specific application of the BTPM
framework to Michigan lakes.

Implications and general features of the BTPM Frame-
work—One critical advantage of our BTPM framework,
compared to other approaches for setting nutrient criteria,
is that our framework explicitly addresses several in-
terdependent questions that should be answered when
setting nutrient criteria: What is the expected condition?
What is the effect of nutrients on biological responses?
What level of nutrients protects biological integrity? And,
what is a reasonable level of protection? Our BTPM
framework addresses these questions by: (1) integrating
multiple pieces of information for setting nutrient criteria
(expected conditions, BIO response thresholds, and current
nutrient concentrations) into a single algorithm, (2)
allowing nutrient criteria to be developed on an ecosys-
tem-specific basis, instead of a single criterion for all
ecosystems within a given geographic region, (3) incorpo-
rating uncertainty into the benchmark-identification pro-
cess which allows policy makers to make risk-level
decisions based on scientific evidence, and (4) allowing
for updating as additional data become available through
refinements of the predictive model or the BIO benchmark
identification procedure.

Although we have presented a fairly detailed description
of a framework to set nutrient criteria using Michigan lakes
as an example, each application of this framework will
likely result in a different set of decisions and justifications
based on available data. In addition, there are still many
decisions that need to be made at the implementation stage.
For example, in our case, lake managers must still decide
the lake sampling period for assessment, the management
actions for lakes that exceed its nutrient criterion, how
‘close’ a lake has to be to its criterion to be considered
attaining or nonattaining (i.e., how much measurement
error is acceptable), and how to regulate surface water
discharges of phosphorus to ensure that lakes meet the
nutrient standards. These decisions will vary region to

Table 7. Results of the regression tree analysis (RTA) of the relationship between TP and the untransformed biological responses
(BIO) where the fit statistic, the proportional reduction in variance (RTA-PRE), is $0.30; and r2 values for the linear regression between
TP and the BIO responses (transformed where necessary); all linear regressions are significant at p # 0.05, unless noted otherwise. For the
dataset description, letter designation, and citation, see Table 3. n is the number of lakes in each analysis. For relationships that had more
than one threshold, the values in bold are the thresholds that occur first, with the greatest reduction in deviance. The IQ-range is the
interquartile range of the bootstrapped thresholds.

Dataset Biological responses
TP range
(mg L21) n

TP threshold(s)
(mg L21)

RTA -
PRE

Linear
regression r2

IQ-range in
bootstrapped

thresholds

Phytoplankton and clarity
a, c, e Chl a (mg L21) 2.6–64.0 140 34.1 0.59 0.42 16–37
c Phytoplankton biomass (mg L21) 4.8–64.0 56 26.7 0.78 0.44 16–31
c Extinction coefficient (m21) 4.8–64.0 64 26.7 0.71 0.47 12–37
a, c, e, f Secchi depth (m) 2.6–64.0 153 5.5, 11.4, 22.0 0.32 0.29 5–21

Zooplankton
d, e, f Cladoceran mean length (mm) 5.3–32.3 43 11.2, 15.3 0.43 ns 6–11
d, e Proportion Daphnia biomass 5.3–32.3 28 11.7, 16.5 0.64 0.53 9–12

Zooplankton biomass (mg L21) 5.3–32.3 28 13.0, 15.6 0.30 0.21 8–13

782 Soranno et al.



region and are beyond the scope of our study here, but are
necessary to address when applying this or any other
framework.

Another challenging issue when developing nutrient
criteria is determining an acceptable allowance (i.e.,
deriving EXPA) for the expected nutrient concentrations.

In our application, TP criteria were set higher than
‘reference condition’ (EXP0) through the incorporation of
an allowance term. However, lakes should be managed to
maintain resilience in response to potentially high in-
terannual variability in nonpoint P loading (Carpenter and
Cottingham 1997) and resulting high variability in lake TP

Fig. 5. (A–D) Biological (BIO) responses for phytoplankton and clarity metrics versus TP for the variables with moderate-strong
regression tree analysis (RTA) fits ($0.30). Each data point represents a single lake. The plotted line is the cumulative frequency of the
1,000 bootstrapped thresholds (right-hand y-axis, proportion). The arrows refer to the thresholds identified from the individual RTA
analysis. Where there is more than one threshold identified, the solid arrow is the first threshold and dotted arrows are subsequent
thresholds. n is the number of lakes in each dataset. (E–G) Same as above except for zooplankton metrics.
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and Chl a (Knowlton and Jones 2006). There is evidence
from modeling studies of single ecosystems that suggests
that we should take a precautionary approach in light of
the large uncertainties in limnological relationships, sto-
chastic interannual P inputs, and lags in implementing
policy (Carpenter et al. 1999). An important limitation to
our application of the BTPM framework to Michigan lakes
is the lack of quantification of interannual P variability
associated with CUR and EXPA, which can influence
resulting management recommendations (Stow et al. 1997).
Unfortunately, quantification of prediction uncertainty
associated with interannual variability requires a large
amount of data typically not available for substantial
numbers of lakes. Future applications of the BTPM
framework should incorporate these important factors
where data are available (Knowlton and Jones 2006) or
develop novel approaches, such as examining lake variance
as an indicator of thresholds (and regime shifts) in
ecosystems (Brock and Carpenter 2006) or taking a Bayes-
ian approach (Borsuk et al. 2004; Lamon and Stow 2004).

Finally, an important component in establishing any
standards for management is the quantification and
communication of uncertainty (Harris et al. 2003). In the
BTPM framework, uncertainty can be quantified for each
of the four major steps. However, there are tradeoffs
among complete modeling of uncertainty, implementation
ease, communication between managers and the public,
and data availability. In our application of the BTPM
framework for Michigan lakes, we incorporated uncertain-
ty in the first two steps. In our predictive HGM-LU model,
we incorporated model error by using the 75th confidence
interval for EXPA. For the BIO benchmarks, we quantified
uncertainty (defined as risk) using a bootstrap simulation
(King and Richardson 2003). Although we did not formally
propagate errors through to the final step of assigning each
nutrient criterion, we found that the BTPM algorithm is
somewhat robust for uncertainties from the previous two
steps, particularly the prediction of EXPA. For example, as
long as the predicted value of EXPA is in the same BIO
zone as its true value, then the nutrient criterion (and
consequently, the management action) remains the same.
We chose the simplest case in our Michigan lakes example
where we treat both the BIO benchmarks and the expected
conditions as single point values for demonstration
purposes and due to lack of data. To handle more complex
methods of quantifying uncertainty including Bayesian
analyses, one could treat both the BIO benchmarks and
expected conditions as ranges of values with probabilities
associated with those ranges. In sum, the BTPM frame-
work can be adapted to incorporate uncertainty at any level
of complexity.

Application of the BTPM framework to Michigan lakes—
In our application of the BTPM framework to Michigan
lakes, we used an HGM-LU model to predict TP in
Michigan lakes, and we generated BIO benchmarks by
searching for nonlinear relationships of commonly mea-
sured biological responses with TP. Next, we discuss issues
that arose during our application of these two specific steps
in more detail, pointing out limitations of our application,
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topics that need further study, and implications for other
applications of this framework.

For modeling lake TP, we took a hydrogeomorphic
perspective that recognizes that lake nutrients are a function
of both local and regional hydrogeomorphic features; and
we used data readily available to state agencies. Predictive
ability would be improved if we had sufficient data to use
well-established process-based models that predict lake TP
concentrations from loading rates and lake hydrology, but
this is rarely the case for large numbers of lakes that need to
be managed. For example, MI has 6,595 lakes .0.04 km2,
most of which are public and must be managed by the state,
often without any lake-specific data available. Thus,
building models from GIS databases that are available
statewide has obvious appeal and warrants further research
to improve predictive ability.

We found that lake HGM predictors captured variation
in TP better than the regional predictor ecoregion. This
result agrees with previous studies that have shown that
ecoregions alone do not capture TP variation well for
streams (Dodds and Oakes 2004, Wickham et al. 2005) or
lakes (Cheruvelil et al. in press), most likely because
ecoregion ignores important local, site-level features such
as lake depth, catchment area or finer-scaled patterns in
surficial geology. Furthermore, the ability of ecoregion to
explain variation in TP is even lower once the effect of
LULC is removed (Wickham et al. 2005; Cheruvelil et al. in
press). Nevertheless, ecoregions should still be considered
when developing a HGM-LU model because ecoregions are
useful for a variety of management applications (Stoddard
2004), continue to be used by state and federal agencies,
and may become more relevant for larger spatial extents
than studied here (Cheruvelil et al. in press). In addition,
ecoregion is likely to become important for study areas
with more heterogeneous landscapes than Michigan
(Heiskary and Wilson 2005) or for other variables besides
TP (such as total nitrogen) (Cheruvelil et al. in press).

One way to test our HGM-LU model is to compare
EXP0 of our lakes with expected TP from presettlement
times obtained from paleolimnological reconstruction of
TP using diatom communities. In a study of northeastern
U.S. lakes, Dixit et al. (1999) found that 47% of their lakes
had TP ,10 mg L21, and 49% were between 10 mg L21 and
30 mg L21. For our study lakes, EXP0 was ,10 mg L21 TP
for 66% of our lakes, and the remaining lakes had TP
,30 mg L21 . Although lakes in northeastern U.S. are not
identical to our study lakes, they share many similar HGM
features, including climate. Paleolimnological reconstruc-
tion of historical TP levels for a limited number of lakes
within the region under study is a good supplement to our
approach and can be integrated into our framework.

An important challenge in setting nutrient criteria is the
selection of BIO responses to use for identifying bench-
marks. The phytoplankton metrics that we used for the
Michigan lakes analysis have obvious relevance to lake
management because these metrics measure some compo-
nent of algal biomass which subsequently influences water
clarity. Cladoceran mean length has also been shown to be
strongly related to Secchi transparency because cladocerans
favor algal particles that have high light attenuation

(Stemberger and Miller 2003). Similarly, the proportion
of daphnid biomass is relevant given the dominance of
daphnids in filtering particles, their importance in the
zooplankton community, and their critical role in pelagic
lake foodwebs as a source of food for planktivorous and
juvenile fishes. Depending on data availability, there may
be additional, highly relevant biological responses that
have threshold responses to changes in TP for other
management units.

Our results suggest that nonlinear relationships of BIO
responses with TP may be more common than previously
thought, especially when examined in the context of the risk
of nuisance conditions, such as cyanobacteria blooms
(Downing et al. 2001). Visual inspection of published
relationships suggests the existence of nonlinear relation-
ships, even though they have not been quantified (Jeppesen
et al. 2000). For example, several taxonomic groups of
phytoplankton exhibit nonlinear relationships to increasing
TP, where the thresholds appear to occur between
10 mg L21 and 30 mg L21 TP (Watson et al. 1997), or in
the case of % cyanobacteria biomass at ,30 ug L21 and
,100 ug L21 (Downing et al. 2001). In another study, the
proportion of picophytoplankton declined dramatically
above a TP value of ,8 mg L21 (Watson et al. 1992).
Finally, Vadeboncoeur et al. (2003) examined the pro-
portion of total lake primary production due to periphyton
versus pelagic algae, and visual inspection of their data
suggests a breakpoint at ,10 mg L21 TP, above which the
proportion of total primary production due to benthic
production dramatically declines. Having relatively high
benthic production could be viewed as a desirable state
because it signifies that there is enough light for production
to occur on sediment surfaces in the littoral zone,
facilitating both periphyton and aquatic plant growth and
consequently littoral zone foodwebs. Evidence such as the
above suggests that it will be fruitful to reexamine and
quantify many existing datasets for nonlinear responses of
lake biological and ecosystem dynamics along a TP
gradient.

These nonlinear responses are important to consider in
a management context as they are likely points where
there is an abrupt change in an ecosystem, or where small
changes in the driver produces a large response, which is
conceptually linked to the idea of resilience (Groffman et
al. 2006). An assumption that is often implicit in nutrient
criteria development is that during years of unusually
high phosphorus loads due to climate and anthropogenic
variability, lake biology and phosphorus dynamics may
respond, but not irreversibly so, as might occur with
a regime shift (Carpenter 2003). Thus, during these times,
the lake would not shift to a ‘new state’ beyond which it
would likely not return, as occurs in regime shifts
between clear and turbid states in lakes (Genkai-Kato
and Carpenter 2005). If threshold responses are in fact
tied to regime shifts, we should manage lakes in such
a way to avoid them because reversal is either difficult or
impossible over relevant time scales (Carpenter 2003).
Unfortunately, phosphorus is just one component that
pushes a lake to another regime; factors such as food web
structure, lake physical modifications, climate change,
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and non-native species introductions also determine
where a lake is in relation to regime shifts. Therefore,
all of these factors need to be managed concurrently with
phosphorus and provide further support for a precaution-
ary approach to setting nutrient criteria to ensure that the
criteria correctly represent the designated uses they are
intended to protect.
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