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SUMMARY

1. For north temperate lakes, the well-studied empirical relationship between phosphorus

(as measured by total phosphorus, TP), the most commonly limiting nutrient and algal

biomass (as measured by chlorophyll a, CHL) has been found to vary across a wide range

of landscape settings. Variation in the parameters of these TP–CHL regressions has been

attributed to such lake variables as nitrogen ⁄phosphorus ratios, organic carbon and

alkalinity, all of which are strongly related to catchment characteristics (e.g. natural land

cover and human land use). Although this suggests that landscape setting can help to

explain much of the variation in ecoregional TP–CHL regression parameters, few studies

have attempted to quantify relationships at an ecoregional spatial scale.

2. We tested the hypothesis that lake algal biomass and its predicted response to changes in

phosphorus are related to both local-scale features (e.g. lake and catchment) and

ecoregional-scale features, all of which affect the availability and transport of covarying

solutes such as nitrogen, organic carbon and alkalinity. Specifically, we expected that land

use and cover, acting at both local and ecoregional scales, would partially explain the

spatial pattern in parameters of the TP–CHL regression.

3. We used a multilevel modelling framework and data from 2105 inland lakes spanning 35

ecoregions in six US states to test our hypothesis and identify specific local and ecoregional

features that explain spatial heterogeneity in TP–CHL relationships. We include variables

such as lake depth, natural land cover (for instance, wetland cover in the catchment of

lakes and in the ecoregions) and human land use (for instance, agricultural land use in the

catchment of lakes and in the ecoregions).

4. There was substantial heterogeneity in TP–CHL relationships across the 35 ecoregions.

At the local scale, CHL was negatively and positively related to lake mean depth and

percentage of wooded wetlands in the catchment, respectively. At the ecoregional scale,

the slope parameter was positively related to the percentage of pasture in an ecoregion,

indicating that CHL tends to respond more rapidly to changes in TP where there are high

levels of agricultural pasture than where there is little. The intercept (i.e. the ecoregion-

average CHL) was negatively related to the percentage of wooded wetlands in the

ecoregion.
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5. By explicitly accounting for the hierarchical nature of lake–landscape interactions, we

quantified the effects of landscape characteristics on the response of CHL to TP at two

spatial scales. We provide new insight into ecoregional drivers of the rate at which algal

biomass responds to changes in nutrient concentrations. Our results also indicate that the

direction and magnitude of the effects of certain land use and cover characteristics on lake

nutrient dynamics may be scale dependent and thus likely to represent different

underlying mechanisms regulating lake productivity.

Keywords: Bayesian hierarchical models, ecological drainage unit, eutrophication, lake productivity,
total phosphorus–chlorophyll a relationships

Introduction

The appeal of the empirical total phosphorus (TP)–

chlorophyll a (CHL) relationship is demonstrated by

the ubiquity of its development for a wide range of

lake types and geophysical regions. Studies compar-

ing the properties of published empirical models (e.g.

Prairie, Duarte & Kalff, 1989; Brown et al., 2000;

Phillips et al., 2008) have shown that the estimated

parameters (i.e. the slope and intercept) of the TP–

CHL linear regression model vary by lake character-

istics (e.g. lake depth) and geographic regions (Malve

& Qian, 2006; Jackson et al., 2007; Phillips et al., 2008;

Freeman, Lamon & Stow, 2009). These differences in

the slope and intercept of the TP–CHL regression

have critical management and ecological implications

related to the efficiency of nutrient reduction and

associated ecosystem responses.

Three factors have been identified as having strong

effects on the TP–CHL relationship. First, low N ⁄P
ratios generally result in lower CHL at high P

concentrations because of N-limitation (Prairie et al.,

1989; Downing & McCauley, 1992; McCauley, Down-

ing & Watson, 1998). Second, high concentrations of

calcium and associated alkalinity can result in lower

CHL per unit P because of chemical immobilisation

(Håkanson et al., 2005; Phillips et al., 2008). Third,

high humic water colour is typically associated with

higher CHL per unit P, although the exact mecha-

nisms have not been identified (Nurnberg & Shaw,

1999; Phillips et al., 2008; Webster et al., 2008). Inter-

estingly, like TP, which typically is supplied to lakes

from both natural and human-modified terrestrial

sources, all three of these factors have very strong ties

to the surrounding landscape. As examples, N ⁄P
supply rates from anthropogenic land use activities

strongly influence N ⁄P ratios in lakes (Downing &

McCauley, 1992), calcium and alkalinity in lakes

reflect geologic setting (Baker et al., 1991), and humic

water colour in lakes is derived from surrounding

wetlands and forests (Gergel, Turner & Kratz, 1999;

Xenopoulos et al., 2003; Canham et al., 2004). These

relationships suggest that TP–CHL regressions should

have a strong landscape or regional signal, but given

the differing mechanisms and spatial heterogeneity of

these three factors, the resulting pattern could be

complex to quantify or interpret.

Although several studies have quantified ecore-

gional differences in the TP–CHL parameters (e.g.

Phillips et al., 2008), the underlying causes of these

differences are less well understood. The primary goal

of our paper is to explicitly fit ecoregional TP–CHL

models and to explain observed differences in model

parameters using ecoregional landscape features,

specifically human land use (hereafter land use) and

natural land cover (hereafter land cover). Our hypoth-

esis was that lake algal biomass at a given TP, as well

as the predicted response rate to changes in phospho-

rus, is related both to local-scale factors that affect

internal nutrient loading, such as lake depth, and to

ecoregional-scale landscape features that affect the

availability and transport of covarying solutes such as

alkalinity, nitrogen and organic carbon. For example,

we predicted that land use would influence not only

the average CHL concentration of lakes within an

ecoregion, but also the average CHL response of lakes

within an ecoregion to changes in TP. If this predic-

tion is correct, we would expect correlations between

land use characteristics of specific ecoregions and

corresponding ecoregion-specific TP–CHL regression

parameters.

Ordinary least-squares (OLS) regression is com-

monly used to estimate parameters for TP–CHL

regressions. More recently, however, it has been
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demonstrated that Bayesian hierarchical models have

many desirable properties, including providing unbi-

ased estimates compared with OLS regression (Malve

& Qian, 2006), that make them ideal for estimating

nutrient–CHL relationships from data collected across

ecoregions or from different lake types (Stow et al.,

2009). Further, because aquatic ecosystems are hier-

archically organised (Wiens, 1989; Lowe, Likens &

Power, 2006), we have to model features at more than

one spatial scale. Finally, hierarchical models provide

a flexible framework for modelling variation in param-

eters of cross-sectional data (Gelman & Hill, 2007).

Here, we used Bayesian hierarchical models to deter-

mine whether land use patterns explain ecoregional

parameter variation in the TP–CHL relationship for a

diverse set of more than 2000 inland lakes across the

midwest and north-eastern US. Because of the com-

plexity inherent in such landscape drivers, our hypo-

thesis can only be addressed using an integrated

multilevel modelling framework that can factor in

covariates measured at a several spatial scales.

Methods

Lake data

Our database included 2105 lakes in six states:

Michigan, Wisconsin, Iowa and Ohio in the Upper

midwest, and Maine and New Hampshire in the

north-east (Fig. 1). TP, CHL and mean depth data were

compiled from the state management agency database

described in Webster et al. (2008) and data from the

Ohio Environmental Protection Agency and Iowa

State University. In brief, these data represent single-

point measures collected predominately between 1990

and 2003 (with a few measurements dating back to

1975) from the mixed layer during summer stratifica-

tion (July to September) from lakes of surface area

‡0.01 km2 and maximum depth ‡2 m. Each lake

is represented by a single data point in the analysis

(i.e. there were no repeat observations of individual

lakes).

Landscape data

We analysed landscape data at both spatial scales that

have an a priori relationship with either lake TP or

CHL, or the factors that influence TP or CHL: per cent

total agriculture, pasture agriculture, arable (row

crop) agriculture, total wetlands, herbaceous wet-

lands, wooded wetlands, and two measures of geo-

logic setting that are related to lake alkalinity: glacial

till and patchy quaternary sediment. For land use and

cover, we used the 1992 National Land Cover Dataset

(http://landcover.usgs.gov/natllandcover.php) as

described in Webster et al. (2008) and Wagner et al.

(2007). For the measures of geologic setting, we used

the two surficial geology categories in a data set

available for the eastern US (Soller & Packard, 1998).

To measure landscape features at ‘Level 1’ (see

Statistical analysis for details), we quantified land-

scape features around lakes using a 500-m buffer

rather than using catchments (because catchment

delineations were not available for our 2105 lake data

set and were too costly to generate). We used these

buffers as a surrogate for catchment land use and

cover, recognising that the actual land use and cover

in some catchments may differ from those in the 500-

m buffer, but in general, these two ways to measure

land use and cover will be strongly correlated with
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Fig. 1 Map of study area including states

(shaded in map and in insert showing

location within North America), study

lakes (black dots) and the ecoregions

(ecological drainage units, thick outlines).

One- to three-digit code names are given

for each ecoregion in Figs 3 & 4 and full

names are in Appendix S1.

Relationship between total phosphorus and chlorophyll 3

� 2011 Blackwell Publishing Ltd, Freshwater Biology, doi:10.1111/j.1365-2427.2011.02621.x



each other. We tested this assumption on a subset of

our lakes for which we had both measures (461 MI

lakes, P. A. Soranno, unpubl. data). Land use and

cover in the 500-m buffer was highly correlated with

that in the catchment (% agriculture, r = 0.79, %

forest, r = 0.86 and % wetland, r = 0.64). Therefore,

the 500-m buffer is a reasonable measure of lake

catchment land use and cover.

An additional assumption that we made was

regarding the selection of the most appropriate land

use and cover dataset. Land use and cover data for

our large study area were not available for many years

within the time interval the study lakes were sampled,

nor were standardised methods used for land use and

cover measured at the state level. We chose the 1992

National Land Cover Dataset (http://landcover.usgs.

gov/natllandcover.php) because consistent methods

were used across the entire study area, and 1992 is

close to the median and mean time periods of the

limnological sample dates (median year is 1999; mean

year is 1995). Ideally, one would exactly match the

lake data to the land use and cover data. However,

there is little consensus as to whether current or

historical land use and cover, both of which can

strongly influence fresh waters, represents the more

important time period influencing lake nutrients (e.g.

Harding et al., 1998; Maloney et al., 2008). Several

studies have shown that past land use and cover has

very strong, if not stronger, effects on freshwater

responses than present land use and cover (e.g.,

Harding et al., 1998; Maloney et al., 2008). Therefore,

the fact that the land use and cover data are older than

some of the limnological samples should not be a

problem because lake TP probably integrates the

effects of past land uses and covers.

To measure landscape features at Level 2, we

quantified the same landscape features that we quan-

tified at Level 1 for each of the 35 ecoregions in our

study area (see Statistical analysis for details). We

chose ecological drainage units (Higgins et al., 2005;

Appendix S1) as the regionalisation framework to

explore Level 2 variation in TP–CHL regression

parameters. Ecological drainage units are based on

the agglomeration of river catchments and represent

patterns in physiography, climate and freshwater

ecosystem connectivity at a coarse spatial scale (Hig-

gins et al., 2005). Ecological drainage units have been

shown to outperform other lake grouping schemes in

terms of capturing among-region heterogeneity in

water-quality metrics for the state of Michigan

(Spence Cheruvelil et al., 2008), and they were iden-

tified as an important measure of the freshwater

landscape for the six state study area (Spence Cher-

uvelil, unpubl. data).

Statistical analysis

We used a hierarchical Bayesian modelling frame-

work to identify ecoregional landscape features that

explain among-ecoregion variation in TP–CHL regres-

sion parameters. The model is a varying intercept,

varying slope model and can be viewed as having two

levels, each of which can have predictor variables and

variance components. The first level of the model has

lake-level predictors of CHL, such as lake TP concen-

tration and mean depth, and the second level has

ecoregional landscape measurements for modelling

variability among the varying intercepts and slopes.

Because our primary goal was to model variation in

TP–CHL regression parameters, as an initial modelling

step, we quantified the variation in slopes and inter-

cepts in the TP–CHL relationship among regions by

fitting a model with log10 CHL as the response

variable, log10 TP as the predictor variable and

ecoregion as a grouping factor. The linear model was

unconditional at Level 2 (i.e. included no landscape

predictors). The first level of the model is as follows:

Level 1:

yi � N aj½i� þ bj½i�TPi; r
2
y

� �
; for i ¼ 1; . . . n ð1Þ

where yi is log10 CHL from lake i, aj is the intercept for

the jth ecoregion, bj is the slope for the TP–CHL

relationship for the jth ecoregion and r2
y is the residual

variance after accounting for lake TP. The second level

of the model is as follows:

Level 2:

aj

bj

� �
� N

la
lb

� �
;

r2
a qrarb

qrarb r2
b

� �� �
; for j ¼ 1; . . . J

ð2Þ

where la is the population–average intercept (the

average intercept across all ecoregions), lb is the pop-

ulation–average slope of the TP–CHL relationship, r2
a

and r2
b are the variance estimates among the ecoregion-

specific intercepts and among the ecoregion-specific
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slopes of the TP–CHL relationships, respectively, and q
is a between-group correlation parameter. We

used non-informative normal priors for la and lb and

non-informative uniform priors for ry, ra and rb

(Gelman, 2006). We modelled the covariance matrix

for the intercepts and slopes using the scaled inverse-

Wishart distribution (i.e. a uniform prior for q; Gelman

& Hill, 2007).

After quantifying the variability in slopes and

intercepts in the TP–CHL regression parameters

among ecoregions, we used the following modelling

process to identify the specific landscape predictors

that best explained the variation. First, because esti-

mating model parameters within a Bayesian context is

computationally intensive, and we were interested in

examining the effects of several landscape covariates,

we examined the effects of each landscape covariate

separately on both the varying intercepts and slopes

by fitting hierarchical linear models using the lmer

function of the R package lme4 (Bates & Maechler,

2009; R Development Core Team, 2009). We retained

covariates (Table 1) that explained at least some of the

variation in the slopes and ⁄or intercepts, as judged by

comparing the magnitude of the conditional variance

relative to the unconditional variance estimates (i.e. if

the conditional variance was smaller than the uncon-

ditional variance, we retained the covariate for con-

sideration in future modelling). In addition, because

many of the landscape covariates were highly corre-

lated, out of a set of correlated variables, we retained

the variable that explained the most variance in the

TP–CHL regression parameters. This approach re-

sulted in a set of uncorrelated covariates for use in

Bayesian analysis.

We then added Level 2 landscape covariates to the

model. The inclusion of covariates to explain variation

Table 1 Summary statistics for the

response variable (chlorophyll a, CHL)

and Level 1 and Level 2 covariates

examined to explain within-ecoregion

variation in CHL and between-ecoregion

variation in TP–CHL regression

parameters, respectively

Mechanism

1st

quartile Mean Median

3rd

quartile

NA Chlorophyll a (lg L)1) 2.6 10.0 4.4 8.5

Level 1 covariates

NA Total phosphorus (lg L)1)† 8.0 22.7 12.0 20.0

NA Mean depth (m)† 2.4 4.5 3.7 5.6

Colour Wetlands, wooded (%)† 1.3 7.2 3.5 9.0

Colour Wetlands, herbaceous (%) 0.3 1.9 1.3 2.6

Colour Wetlands, total (%) 2.5 8.8 5.0 10.6

N ⁄ P Agriculture, pasture (%)† 0.1 5.5 0.8 5.4

N ⁄ P Agriculture, arable (%) 0.6 8.7 3.6 11.3

N ⁄ P Agriculture, total (%) 1.0 14.9 5.5 19.5

Alkalinity Surficial geology, a1 (%) 0.0 12.5 0.0 0.0

Alkalinity Surficial geology, b2 (%) 0.0 53.5 60.5 100.0

Level 2 covariates

Colour Wetlands, wooded (%)† 3.1 6.3 3.3 8.4

Colour Wetlands, herbaceous (%) 0.9 1.6 1.5 1.7

Colour Wetlands, total (%) 4.2 7.9 4.8 10.8

N ⁄ P Agriculture, pasture (%)† 1.1 6.8 2.0 13.1

N ⁄ P Agriculture, arable (%) 4.5 15.4 5.3 17.7

N ⁄ P Agriculture, total (%) 6.4 22.7 7.2 36.0

Alkalinity Surficial geology, a1 (%) 0.2 12.6 14.4 23.3

Alkalinity Surficial geology, b2 (%) 47.0 52.9 47.7 65.3

†Covariates used in Bayesian hierarchical modelling (see Methods for details).
1a is Patchy quaternary sediment.
2b is Glacial till.

The ecoregions used in this analysis were ecological drainage units. Total number of

lakes (sample size, n) was 2105 for Level 1 summaries and 35 ecological drainage units

for Level 2 summaries. Percentages of agriculture and wetlands for Level 1 covariates

were summarised within an equidistant 500-m buffer around each lake perimeter using

GIS. Land use and cover variables for Level 2 covariates were summarised for each

ecoregion. Mechanism refers to the hypothesised linkage between the landscape feature

and the lake chemical response thought to influence the TP–CHL relationship from the

literature; NA refers to variables for which a mechanism is not applicable

Relationship between total phosphorus and chlorophyll 5

� 2011 Blackwell Publishing Ltd, Freshwater Biology, doi:10.1111/j.1365-2427.2011.02621.x



in slopes and intercepts, for example the per cent

wetlands and agricultural land use within an ecore-

gion, modifies the Level 2 model in eqn 2 to:

Level 2:

aj

bj

 !
�N

ca
0þca

1%wetlandsj

cb
0þcb

1%agriculturej

 !
;

r2
a qrarb

qrarb r2
b

 ! !
;

for j¼1; . . .J ð3Þ

where ca
0, cb

0, ca
1 and cb

1 are the coefficients for the

intercept, effect of TP and per cent wetlands and

agriculture, respectively. ra and rb are now condi-

tional variances, the regional variance in aj and bj after

controlling for regional per cent wetlands and agri-

cultural land use. Non-informative normal priors

were used for ca
0, cb

0, ca
1 and cb

1 and priors for ra, rb

and q are as described in eqn 2. Lastly, because lake-

specific properties are important drivers of nutrient

dynamics, we considered models that had covariates

in addition to TP at Level 1. The Level 1 covariate that

we wanted to control for a priori was mean depth,

because of the importance of lake depth in driving

light climate and P dynamics (Vollenweider, 1968).

We also examined models that controlled for the

Level 1 covariates that were identified as important in

explaining Level 2 variation among TP–CHL param-

eters. We limited the Level 1 covariates to this subset

of potentially important Level 1 covariates because

our primary goal was to identify land use character-

istics that explain variation among parameters. This

process of selecting covariates resulted in a set of

models that were then fitted and evaluated as

described below. Prior to fitting models, we centred

all Level 1 covariates by subtracting each value from

the overall mean (xij � �x; i.e. centred on the grand

mean) to aid model convergence (Gelman, 2004).

After fitting the set of models, we used the deviance

information criterion (DIC; Spiegelhalter et al., 2002)

as a measure of fit for the entire model and explained

per cent variance for each level (as described in

Gelman & Pardoe, 2006) to quantify model fit at each

level of the model. We ran three Markov chains in

parallel, each with starting values drawn from a

random distribution. After discarding the first 5000

iterations of each chain, we examined the scale

reduction factor ðR̂Þ, a convergence statistic, for each

parameter. This statistic is the possible reduction in

the width of the confidence interval if the simulations

were run forever (Park, Gelman & Kaplan, 2006). We

ran simulations until R̂ was less than or equal to 1.1

for all parameters (Park et al., 2006). All analyses were

performed using WinBUGS version 1.4 (Spiegelhalter

et al., 2004). Means are reported ± 1 standard devia-

tion, unless stated otherwise.

Results

Lakes included in our analysis ranged from oligo-

trophic to eutrophic, with TP ranging from 2 to

765 lg L)1 and CHL ranging from 0.1 to 328 lg L)1

(Table 1). Mean TP and CHL, across all lakes, were

22.7 ± 41.8 and 10.0 ± 20.5 lg L)1, respectively. Lake

mean depth and landscape characteristics surround-

ing individual lakes and among ecoregions also

varied considerably. For example, percentage pasture

surrounding individual lakes ranged from 0 to 80%

and percentage pasture within an ecoregion ranged

from 0.3 to 39% (Table 1).

Our focus on the relationship between TP and CHL

relies on the assumption that P is the primary factor

limiting algal biomass in the lakes. Because

N-limitation has been invoked in other studies, we

investigated the relative importance of N – compared

with P – limitation by examining the conditional

relationship between TP, total nitrogen (TN) and

CHL (Appendix S2; Qian, 2010). The conditional plots

show the relationship between TP–CHL at relatively

constant TN concentrations. The same was done for

TN–CHL relationship holding TP constant. These

analyses suggested that P, rather than N, was most

important in limiting algal biomass in our study

lakes.

TP–CHL relationship among regions

As expected, CHL was positively correlated with TP,

the latter explaining 56% of the variability in CHL

(Fig. 2). The estimated posterior means for the pop-

ulation–average intercept and slope were 0.70 [95%

credible interval (CI) = 0.64, 0.76] and 0.86 (95%

CI = 0.77, 0.97), respectively (Table 2). However, there

was substantial variation among ecoregions in both

the intercepts and slope parameters of the TP–CHL

relationship (Table 2; Fig. 2). Estimated posterior

means for variation among intercepts rað Þ and slopes

rb
� �

was 0.14 (95% CI = 0.10, 0.20) and 0.21 (95%

CI = 0.12, 0.33), respectively. Estimated posterior
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means for ecoregion-specific intercepts ranged from

0.40 to 0.95 and for slopes ranged from 0.53 to 1.15

(Figs 3 & 4). Because we centred on the grand mean of

TP, the intercept for the jth ecoregion is interpreted as

the predicted CHL concentration (log10-transformed)

in a lake whose log10-transformed TP value is equal to

the grand mean (i.e. an adjusted mean for the jth

ecoregion). Ecoregions in Iowa, southern Wisconsin

and eastern Ohio had, on average, the highest inter-

cept estimates (i.e. higher average CHL concentra-

tions) compared with other ecoregions (Fig. 3).

Ecoregions in central Wisconsin and parts of Iowa

and northern Ohio also had, on average, higher slope

estimates compared with other ecoregions. In con-

trast, regions in northern Michigan and Maine and

New Hampshire tended to have the lowest estimates

of slope and intercept (Fig. 4).

Model selection: explaining variation among

ecoregion-specific TP–CHL regression parameters

The Level 2 covariates (to explain variation in

parameters among ecoregions) included percentage

pasture agriculture for explaining variation among

slopes and percentage wooded wetlands for explain-

ing variation among intercepts. Because percentage

wooded wetlands data were skewed towards zero, a

logit transformation was used. Using these covariates,

we fitted a total of six candidate models (Table 2).

Using DIC, the addition of Level 2 covariates to

explain variation among slopes and intercepts pro-

vided a superior model than one not including

ecoregional predictor variables (DIC = )118.6 for

unconditional Level 2 model and )3736.8 for condi-

tional Level 2 model and a smaller DIC value

indicates a better fitting model; Table 2). Therefore,

all subsequent candidate models included the per-

centages of pasture and wooded wetlands to model

variation among slopes and intercepts, respectively

(i.e. models were conditional at Level 2). As a result,

the candidate models only differ in complexity by the

number and combination of covariates included at

Level 1.

Based on DIC, model 5 was the top-ranked model.

Covariates at Level 1 were TP (positive correlation),

mean depth (negative correlation) and percentage

wetlands (positively correlation); at Level 2, percent-

age pasture was the covariate for the slopes and

percentage wooded wetlands the covariate for the

intercepts (Table 2). The model explained 58% of the

variation in CHL. Percentage wooded wetlands

explained 42% of the variation among ecoregion-

specific intercepts, with ecoregion-average CHL

decreasing with increasing wooded wetlands

(Fig. 5a). Percentage pasture explained 37% of the

variation among ecoregion-specific slopes, with eco-

region-specific TP–CHL regression slopes increasing

with increasing levels of ecoregion pasture (Fig. 5b;

Table 2). Although not contained in the top-ranked

model, it is worth noting that, at Level 1, CHL was

also positively correlated with the percentage of

pasture surrounding each lake.
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Fig. 2 Relationship between log10 total

phosphorus (lg L)1; grand-mean centred,

see Methods) and log10 chlorophyll a (lg

L)1). Solid line is the estimated popula-

tion–average relationship and dashed

lines are ecoregion-specific regression

relationships from a Bayesian hierarchical

model (eqn 1).
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Discussion

We found substantial ecoregional variation in TP–

CHL relationships across the 35 ecoregions,

which was manifest as important differences in both

intercepts and slopes. More importantly, we identified

relationships between these intercepts and slopes and

ecoregional landscape features that included two

important classes of land use and cover: the percent-

ages of pasture and wooded wetlands. Our results

help to build upon previous studies that examined

only the local-scale factors influencing the TP–CHL

relationship. By explicitly considering the surround-

ing landscape at two spatial scales (the lake catchment

and the overall ecoregional context), as well as the in-

lake features that these landscape drivers influence,

we have a more complete understanding of factors

that control within – and across – ecoregion dynamics

of the TP–CHL relationship. Further, our results

support the hypothesis that lake algal biomass at a

given TP, as well as the average predicted response

rate to changes in phosphorus, is related to both

local-scale and ecoregional-scale landscape features.

For example, we predicted that land use and cover

would influence not only the average CHL concen-

tration of lakes within an ecoregion, but also the

average CHL response of lakes in that ecoregion to

changes in TP. Thus, our prediction that land use

characteristics of specific ecoregions were correlated

with corresponding ecoregion-specific TP–CHL

regression parameters was confirmed. We offer a

synthetic depiction of these linkages in a flow diagram

that shows the landscape and lake drivers of the

TP–CHL relationship (Fig. 6).

The ranges of estimated intercepts and slopes from

the TP–CHL hierarchical model were similar to others

reported in the literature. Our estimated ecoregion-

specific slopes ranged from 0.53 to 1.15, with a

population–average mean slope of 0.86. Estimated

slopes of TP–CHL OLS regressions reported in Phil-

lips et al. (2008), and references therein, ranged from

0.72 to 1.4, with a mean slope of 0.94 (n = 15). Because

we grand-mean-centred log10(TP), our intercept esti-

mates were positive as opposed to the negative

intercepts commonly reported in the literature for

non-centred analyses and thus are not directly com-

parable except in a relative sense.

Previous studies have focused primarily on exam-

ining the ability of land use and cover characteristics
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quantified at the local scale (i.e. Level 1 in our model)

to explain variation in water-quality metrics among

waterbodies. In our analysis, the top-ranked model

contained a positive relationship between the per-

centage of wooded wetlands and CHL; however, we

also observed a positive correlation between CHL

concentrations and percentage pasture in several

candidate models. The positive relationship between

lake productivity and agricultural land use in the lake

catchment is expected and has been well established

(Carpenter et al., 1998). The positive relationship

between CHL and the percentage of wooded wetlands

could be because of the influence of humic colour,

supplied to lakes from wetlands, on autotrophic

production. Webster et al. (2008), using a subset of

the database we used in this analysis, explored

interactions between TP and humic colour and effects

of the two on CHL. They summarised several

potential mechanisms that could be responsible for

higher CHL concentrations in humic lakes, such as

phytoplankton communities being restricted to a

smaller volume of water because of a reduction in

the photic zone. In addition to TP and percentage

wooded wetlands, our top-ranked model contained

mean depth as a Level 1 predictor negatively corre-

lated with CHL. This negative correlation was

expected, because lake mean depth has been shown

to be a major influence on P dynamics in lakes, largely

because of the importance of internal nutrient loading

from the sediments in shallow lakes (Wetzel, 2001;

Søndergaard, Jensen & Jeppesen, 2003). Therefore, our

Level 1 model substantiates past research establishing

relationships between CHL and land use or cover and

mean depth.

In contrast to the positive relationship between

percentage wooded wetlands in the catchment and

CHL, we observed a negative relationship between

percentage wooded wetlands in the ecoregion and the

Fig. 3 Region-specific intercepts aj

� �
for

the total phosphorus–chlorophyll a

regression. Solid points are the estimated

posterior means, thick lines are 50% pos-

terior CIs, and thin lines are 95% CIs.

Vertical line represents population–aver-

age posterior mean estimate. Three-digit

codes on the y-axis correspond to ecore-

gions (see Appendix S1). The map depicts

variation in intercepts among ecoregions,

where darker shading indicates larger

intercepts.
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ecoregion-specific intercepts of the TP–CHL regres-

sion. This result suggests that, on average, lakes

within ecoregions with high wetland land cover have

lower CHL concentrations. This contradiction be-

tween relationships quantified at different spatial

scales [compared with the positive relationship

between wetlands and CHL when quantified at the

lake-scale (i.e. Level 1)] illustrates a very important

contribution of our work: the spatial scale-depen-

dence in the direction of the effect of landscape-based

influences on lake productivity. The fact that lakes

within an ecoregion with high per cent wetlands have,

on average, lower CHL concentrations corresponds to

relationships between land use and cover and lake

productivity. As natural land cover types such as

wetlands are lost and replaced with urban and ⁄or

agricultural land uses, we would expect nutrients

(and therefore CHL) to increase. However, this

pattern can also be influenced by a covariation

between soil productivity and per cent wetlands. For

instance, lakes in ecoregions with a high percentage of

wooded wetlands may also be those ecoregions with

relatively low nutrients, and therefore, lakes in those

ecoregions are ‘naturally’ less productive.

In addition to the negative relationship between

percentage wooded wetlands and ecoregion-specific

intercepts, we also observed a positive relationship

between percentage pasture in the ecoregions and the

slope of the TP–CHL relationship. We know that

runoff from agricultural activities is a source of

nutrients (including N and P) that contributes to the

eutrophication of aquatic ecosystems throughout the

world (Turner & Rabalais, 2004; Renwick et al., 2008).

In a meta-analysis, Taranu & Gregory-Eaves (2008)

found that the percentage of land under agricultural

use in a catchment explained 28% of the variation in

lake TP concentration. Although a correlation does

not indicate causation, our results suggest not only

Fig. 4 Region-specific slopes bj

� �
for the

total phosphorus–chlorophyll a regres-

sion. Solid points are the estimated pos-

terior means, thick lines are 50% posterior

CIs, and thin lines are 95% CIs. Vertical

line represents population–average pos-

terior mean estimate. Three-digit codes on

the y-axis correspond to ecoregions (see

Appendix S1). The map depicts variation

in intercepts among ecoregions, where

darker shading indicates larger slopes.
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that pasture in a catchment potentially affects lake

nutrient concentrations and therefore lake productivity

(i.e. CHL concentrations), but also that it can influence

the rate at which CHL, on average, responds to

changes in TP. For example, the steeper slope in the

TP–CHL regression for lakes located in ecoregions

with a high percentage of pasture indicates that CHL

potentially increases at a faster rate in response to

changes in TP compared with lakes in ecoregions with

low percentages of pasture.

We further examined the land use type ‘pasture

agriculture’ in order to understand this contribution

of our research more fully. This land use category

includes a potentially wide variety of agricultural

practices. For instance, the National Land Cover

Dataset defines ‘pasture agriculture’ as ‘Areas of

grasses, legumes, or grass-legume mixtures planted

for livestock grazing or the production of seed or hay

crops.’ Because this category includes land that

contains animals on the land, or land that produces

crops for feeding animals elsewhere, nutrients can be

exported to aquatic systems through several path-

ways, including direct fertiliser applications, manure,

or vegetation and soil reservoirs (McDowell, Nash &

Robertson, 2007; Dougherty et al., 2008). The potential

direct and indirect effects of such agricultural activ-

ities on aquatic systems, combined with the large

spatial scale of this study, do not allow for the

elucidation of mechanisms responsible for the ob-

served patterns. However, we speculate that the

positive correlation observed between regional pas-

ture and TP–CHL slopes may be because of simulta-

neous N and P enrichment, reflected in a greater CHL

response to TP, when compared with regions domi-

nated by other land uses or covers. Although fresh-

water ecosystems have historically been viewed as P

limited, recent work suggests that co-limitation by

both N and P is most common. Elser et al. (2007)

suggest that a potential mechanism for this co-limita-

tion is that enrichment with N or P quickly results in

limitation by the other. Alternatively, areas of intense

agriculture could result in lakes with high export of

both N and P, as well as high N ⁄P ratios, on average,

because of high N inputs relative to P. This could

result in lakes that are P limited and thus would

respond to changes in P more rapidly than lakes with

lower N ⁄P ratios. To examine this hypothesis in more
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Fig. 5 Ecoregion-specific intercepts aj

� �
versus ecoregion per

cent wooded wetlands (logit-transformed) (a) and ecoregion-

specific slopes bj

� �
versus ecoregion per cent pasture agricul-

ture (b) from the total phosphorus–chlorophyll a Bayesian

hierarchical model (Model 3 in Table 2). Points are estimated

posterior means, and vertical lines are 95% posterior credible

intervals. Solid line is estimated hierarchical regression line.

Synthesis of factors influencing TP-CHL relationships at multiple spatial scales

Landscape
feature:

Lake chemical
response

(landscape features
quantified at the local

scale around lake):

Effect on TP-CHL
relationship within

an ecoregion*:

Effect on TP-CHL
slopes and intercepts

across ecoregions
(landscape features

quantified at the
ecoregional scale)**:

Calcareous 
geology and soils 

High agricultural 
land use

High wetland 
cover

High 
calcium

Low 
N:P

High 
water 
colour

Low slope

No relationship
in our models High slopes Low 

interercepts

*   Relative to other ecoregions with less of the landscape feature
** These results are only from our study as no other study has quantified this scale

Low slope High slope

Calcareous 
geology and soils 

High agricultural 
land use

High wetland 
cover

High slopes Low 
interercepts

Fig. 6 Schematic that is a synthesis of the literature and results

from this study illustrating the important landscape influences

on the lake chemical responses that affect within-ecoregion and

across-ecoregion total phosphorus–chlorophyll a regression

parameters. Direction of arrows within boxes indicates the

direction of the effect of the feature in the oval above the box.
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detail, we selected the subset of our study lakes for

which we had N data (n = 1364 lakes and 32 ecolog-

ical drainage units) and fitted a hierarchical model

that included average N ⁄P ratio as a predictor of

ecoregion-specific TP–CHL slopes. This analysis sug-

gested that ecoregions with higher average N ⁄P ratios

did in fact have greater TP–CHL slope parameter

estimates (Fig. 7), which supports studies showing the

influence of N ⁄P ratio on TP–CHL relationships (e.g.

Downing & McCauley, 1992). However, some re-

search has shown that pasture can export nutrients at

low N ⁄P ratios when animals are present (Arbuckle &

Downing, 2001), which suggests that, in our study

area, animals are not present in large numbers on

pasture (i.e. the N and P ‘signals’ at the ecoregional

scale may reflect mainly non-animal contributions,

such as fertiliser applications). However, because the

National Land Cover Dataset definition of pasture

agriculture includes such a wide variety of agricul-

tural practices, it is not possible to make inferences on

the relative importance of animal versus other sources

of pasture-related N and P sources.

Our results suggest that the direction and magni-

tude of the effects of land use practices on lake

nutrient dynamics may be scale-dependent. In addi-

tion, these practices may influence not only the

concentrations of limiting nutrients, but also the rate

at which aquatic ecosystems respond to natural and

anthropogenic disturbances. We need additional

research conducted across spatial scales to elucidate

dynamics, including response rates, related to other

important freshwater processes.
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